
Enterprise COBOL for z/OS

Migration Guide
Version 5.2

GC14-7383-03

IBM

Enterprise COBOL for z/OS

Migration Guide
Version 5.2

GC14-7383-03

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
305.

Fourth edition (March 2019)

This edition applies to Version 5 Release 2 of IBM Enterprise COBOL for z/OS (program number 5655-W32) and to
all subsequent releases and modifications until otherwise indicated in new editions. Make sure that you are using
the correct edition for the level of the product.

You can view or download softcopy publications free of charge at www.ibm.com/shop/publications/order/.

© Copyright IBM Corporation 1991, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

|
|
|

|

Contents

Tables vii

Preface ix
About this information. ix

Terminology clarification ix
IBM COBOL compilers by name and version . . ix
Acknowledgement x
Using your information. x

Summary of changes to this information xi
Changes in GC14-7383-03 (March 2019) xi
Changes in GC14-7383-02 (March 2019) xiv
Changes in GC14-7383-00 (June 2013) xiv
Changes in GC23-8527-01 (August 2009). . . . xv
Changes in GC23-8527-00 (December 2007) . . . xv
Changes in GC27-1409-05 (November 2006) . . xvi
Changes in GC27-1409-04 (March 2006) xvi
Changes in GC27-1409-03 (July 2005) xvi
Changes in GC27-1409-02 (December 2003) . . xvi
Changes in GC27-1409-01 (September 2002) . . xvi
Changes in GC27-1409-00 (November 2001) . . xvi
Changes in GC26-4764-05 (September 2000) . . xvii

Summary of changes to the COBOL compilers . . xvii
Changes in IBM Enterprise COBOL for z/OS,
Version 5 Release 2 with PTFs installed . . . xvii
Changes in IBM Enterprise COBOL for z/OS,
Version 5 Release 2 xviii
Changes in IBM Enterprise COBOL for z/OS,
Version 5 Release 1 Modification 1 xix
Changes in IBM Enterprise COBOL for z/OS,
Version 5 Release 1 xx
Changes in IBM Enterprise COBOL for z/OS,
Version 4 Release 2 xxiv
Changes in IBM Enterprise COBOL for z/OS,
Version 4 Release 1 xxv
Changes in IBM Enterprise COBOL for z/OS,
Version 3 Release 4: service updates, November
2006 xxvi
Changes in IBM Enterprise COBOL for z/OS,
Version 3 Release 4 xxvi
Changes in IBM Enterprise COBOL for z/OS,
Version 3 Release 3 xxviii
Changes in IBM Enterprise COBOL for z/OS
and OS/390, Version 3 Release 2 xxviii
Changes in IBM Enterprise COBOL for z/OS
and OS/390, Version 3 Release 1. xxix
Changes in COBOL for OS/390 & VM, Version
2 Release 2 xxx
Changes in COBOL for OS/390 & VM V2 R1
Modification 2 xxx
Changes in COBOL for OS/390 & VM V2 R1
Modification 1 xxxi
Changes in COBOL for OS/390 & VM, Version
2 Release 1 xxxi

How to send your comments xxxi
Accessibility xxxi

Interface information xxxii
Keyboard navigation xxxii
Accessibility of this information. xxxii
IBM and accessibility xxxii

Part 1. Overview 1

Chapter 1. Introducing the new compiler
and run time 3
Product relationships: compiler, runtime library,
debug 5
Comparison of COBOL compilers 5
Language Environment's runtime support for
different compilers 7
Advantages of the new compiler and run time . . . 7
Changes with the new compiler and run time . . . 14

CMPR2 compiler option not available 14
FLAGMIG compiler option 14
SOM-based object-oriented COBOL not available 14
Integrated DB2 coprocessor available 14
Integrated CICS translator available 15

General migration tasks 15
Planning your strategy 15
Upgrading your source to Enterprise COBOL . . 15
Adding Enterprise COBOL programs to existing
applications 17

Chapter 2. Do I need to recompile? . . 19
Migration basics 19

Runtime migration 19
Compiler migration. 20

Service support for OS/VS COBOL and VS COBOL
II programs 20

Changing OS/VS COBOL programs 21
Interoperability with older levels of IBM COBOL
programs 21

Part 2. Migration strategies. 23

Chapter 3. Compiler upgrade checklist 25

Chapter 4. Planning to upgrade source
programs 27
Preparing to upgrade your source 27

Installing Enterprise COBOL 27
Assessing storage requirements 27
Deciding which conversion tools to use and
install them 28
Educating your programmers on new compiler
features. 28

Taking an inventory of your applications 29
Taking an inventory of vendor tools, packages,
and products 29

© Copyright IBM Corp. 1991, 2019 iii

||

|
||
|
||

||

Taking an inventory of COBOL applications . . 30
Prioritizing your applications 30

Assigning complexity ratings 30
Determining conversion priority 32

Setting up a conversion procedure. 34
Programs without CICS or Report Writer . . . 34
Programs with CICS 35
Programs with Report Writer statements to be
discarded 37
Programs with Report Writer statements to be
retained 38

Making application program updates 39

Part 3. Upgrading programs 43

Chapter 5. Upgrading OS/VS COBOL
source programs 45
Comparing OS/VS COBOL to Enterprise COBOL . 45

Language elements that require change (quick
reference) 45

Converting to 85 COBOL Standard 52
COBOL Conversion Tool (CCCA) 52
OS/VS COBOL MIGR compiler option 53

Language elements that require other products for
support. 53

Report Writer. 53
Language elements that are not implemented . . . 54

ISAM file handling 54
BDAM file handling 55
Communication feature 55

Language elements that are not supported 56
SEARCH ALL statements 62
Undocumented OS/VS COBOL extensions that are
not supported 62
Language elements that changed from OS/VS
COBOL. 70

Chapter 6. Compiling converted OS/VS
COBOL programs 87
Compiler options for converted programs 87
Unsupported OS/VS COBOL compiler options . . 88
Prolog format changes 89

Chapter 7. Upgrading VS COBOL II
source programs 91
Upgrading VS COBOL II programs compiled with
the CMPR2 compiler option 91
85 COBOL Standard interpretation changes. . . . 91

REPLACE and comment lines 92
Precedence of USE procedures 92
Reference modification of a variable-length group
receiver. 92

ACCEPT statement 93
New reserved words 94

New reserved words 94
Undocumented VS COBOL II extensions 95
SEARCH ALL statements 95
Upgrading programs that use SIMVRD support . . 95

Chapter 8. Compiling VS COBOL II
programs 97
Compiler options for VS COBOL II programs . . . 97

Compiling with Enterprise COBOL 97
Compiler options not supported in Enterprise
COBOL. 97

Prolog format changes 99

Chapter 9. Upgrading IBM COBOL
source programs 101
Determining which programs require upgrade
before you compile with Enterprise COBOL . . . 101
Upgrading programs that have SEARCH ALL
statements 102
Upgrading programs that use SIMVRD support 104
Language Environment runtime considerations . . 105
Numeric items with PICTURE P considerations . . 105
New reserved words in Enterprise COBOL . . . 105

New reserved words 106
SEARCH ALL statements 107
Migrating from the CMPR2 compiler option to
NOCMPR2 107

Upgrading programs compiled with the CMPR2
compiler option 107

Upgrading SOM-based object-oriented (OO)
COBOL programs 140

SOM-based OO COBOL language elements that
are not supported 141
SOM-based OO COBOL language elements that
are changed 141

Chapter 10. Compiling IBM COBOL
programs 143
Default compiler options for IBM COBOL
programs 143
Compiler options for IBM COBOL programs . . . 143
Compiler options not available in Enterprise
COBOL 145

Chapter 11. Upgrading programs from
Enterprise COBOL Version 3 147
SEARCH ALL statements 147

Upgrading programs that have SEARCH ALL
statements 147

Upgrading Enterprise COBOL Version 3 programs
that have XML PARSE statements 149

COMPAT XML parser considerations 150
Upgrading Enterprise COBOL programs that have
XML GENERATE statements 153
Converting programs that use new reserved words 153
Upgrading programs that use SIMVRD support 154

Chapter 12. Compiling Enterprise
COBOL Version 3 programs 157
Compiler option changes from IBM Enterprise
COBOL for z/OS, Version 3 157
Differences in the TEST compiler option 158
Debug information changes with IBM Enterprise
COBOL Version 5 159

iv Enterprise COBOL for z/OS, V5.2 Migration Guide

|
||
||

Chapter 13. Upgrading from
Enterprise COBOL Version 4 161
Upgrading Enterprise COBOL Version 4 programs
that have XML PARSE statements 161

COMPAT XML parser considerations 162
Upgrading Enterprise COBOL Version 4 Release
1 programs that have XML PARSE statements
and that use the XMLPARSE(XMLSS) compiler
option 164

Converting programs that use new reserved words 165
Changes in millenium language extensions in IBM
Enterprise COBOL for z/OS, Version 5 166

Chapter 14. Compiling Enterprise
COBOL Version 4 programs 167
Compiler option changes from IBM Enterprise
COBOL for z/OS, Version 4 167
Debug information changes with IBM Enterprise
COBOL Version 5 168

Part 4. What is new and different
with Enterprise COBOL Version 5? 169

Chapter 15. Changes with IBM
Enterprise COBOL for z/OS, Version 5. 171
Prerequisite software and service for Enterprise
COBOL Version 5 171
COBOL source code differences in Enterprise
COBOL Version 5 173
Compiler option changes in Enterprise COBOL
Version 5 174
Changes in compiling with Enterprise COBOL
Version 5 178

Compiler output to uninitialized data sets not
supported 179
JCL and packaging changes for Enterprise
COBOL Version 5 180
Compilation restrictions for user-written
condition handlers with Enterprise COBOL
Version 5 181

Binding (link-editing) changes with Enterprise
COBOL Version 5 182
Changes at run time with IBM Enterprise COBOL
for z/OS 182

Language Environment option changes. . . . 184
Variable length records - wrong length READ 185
Interoperability with older levels of IBM
COBOL programs 186
Error behavior changes for incorrect programs 187
Using object oriented COBOL or interoperating
with C programs 188

Debug information changes with IBM Enterprise
COBOL Version 5 189

WORKING-STORAGE SECTION changes . . . 189

Chapter 16. Adding Enterprise COBOL
Version 5 programs to existing
COBOL applications 195
AMODE and RMODE considerations 197

Part 5. Enterprise COBOL
migration and other IBM products . 199

Chapter 17. Debug tool 201
Initiating Debug Tool 201
Debug information changes with IBM Enterprise
COBOL Version 5 202
Debug Tool changes with IBM Enterprise COBOL
Version 5 202

Full Screen Mode changes with IBM Enterprise
COBOL V5 206
Debug Tool changes for remote mode with IBM
Enterprise COBOL V5 207

Chapter 18. CICS conversion
considerations for COBOL source . . 209
CSD setup differences with Enterprise COBOL V5 209
DFHRPL setup differences with Enterprise COBOL
V5 210
Compiler options for programs that run under
CICS 211
Migrating from the separate CICS translator to the
integrated translator 212

Integrated CICS translator 212
Static calls from COBOL V5 programs to VS
COBOL II programs under CICS 214

Chapter 19. DB2 coprocessor
conversion considerations 215
DB2 coprocessor integration 215
Language elements 217
Code-page conversion 220

Chapter 20. Moving IMS programs to
Enterprise COBOL V5 221
Compiling and linking for running under IMS . . 221
LLA-managed load libraries for performance . . . 222

Part 6. Appendixes 225

Appendix A. Commonly asked
questions and answers 227
Compatibility 227
Compiling with Enterprise COBOL 228
Binding (link-editing) Enterprise COBOL programs 229
Language Environment services 229
Language Environment runtime options 229
Subsystems 230
z/OS 231
Performance. 232
Service 232

Contents v

|
||
||
|
|
|
||
||

|
|
||

||

||
|
||

||

|
||

||

Object-oriented syntax, and Java 6, Java 7 and Java
8 SDKs 232

Appendix B. COBOL reserved word
comparison 233

Appendix C. Conversion tools for
source programs 249
MIGR compiler option 249

Language differences 249
Statements supported with enhanced accuracy 250
LANGLVL(1) statements not supported . . . 251
LANGLVL(1) and LANGLVL(2) statements not
supported 251

Other programs that aid conversion 253
Rational Asset Analyzer 253
COBOL and CICS/VS Command Level
Conversion Aid (CCCA). 253
COBOL Report Writer Precompiler 255
Debug Tool Load Module Analyzer 256
Free and open source COBOL Analyzer . . . 256

Appendix D. Applications with COBOL
and assembler 257
Called assembler programs 257
SVC LINK and COBOL run-unit boundary . . . 257
Runtime support for assembler COBOL calls under
non-CICS. 258
Runtime support for assembler COBOL calls under
CICS 259
Converting programs that change the program
mask 260
Upgrading applications that use an assembler
driver 260

Convert the assembler driver 261
Modify the assembler driver 261
Use an unmodified assembler driver 261

Assembler programs that load and BALR to MAIN
COBOL programs 261
Assembler programs that load and delete COBOL
programs 261
Saving and restoring the high halves of General
Purpose Registers in assembler programs 262
Finding the program name and compile time
stamp in Enterprise COBOL V5 programs 262

Appendix E. Option comparison . . . 263

Appendix F. Compiler limit
comparison 281

Appendix G. Preventing file status 39
for QSAM files 285
Processing existing files 285

Defining variable-length records 285
Defining fixed-length records 286
Converting existing files that do not match the
COBOL record 286

Processing new files 286
Processing files dynamically created by COBOL 287

Appendix H. Overriding binder
(linkage-editor) defaults 289
How to override the defaults 289

Appendix I. TSO considerations . . . 291
Using REXX execs 291

Appendix J. z/OS UNIX considerations 293

Appendix K. Accessing JCL
parameters 295

Appendix L. Migrating from
XMLPARSE(COMPAT) to
XMLPARSE(XMLSS) 297

Notices 305
Programming interface information 307
Trademarks 307

Glossary 309

List of resources 339
IBM Enterprise COBOL for z/OS. 339
Related publications 339

Index 341

vi Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|

||

|
||
|
||

|
||
||

||

|
|
||

Tables

1. COBOL compiler name, version, release and
product numbers ix

2. The Enterprise COBOL for z/OS publications x
3. The Language Environment element of z/OS

publications xi
4. Comparison of COBOL compilers 6
5. Advantages of Enterprise COBOL and

Language Environment 7
6. Complexity ratings for program attribute

conversions 31
7. Assigning program conversion priorities 32
8. Language element differences between OS/VS

COBOL and Enterprise COBOL 46
9. Rules for VSAM file definitions 59

10. Status key values: QSAM files 75
11. Status key values: VSAM files 76
12. USE FOR DEBUGGING declarative: valid

operands 83
13. Compiler options for converted OS/VS

COBOL programs 87
14. OS/VS COBOL compiler options not

supported by Enterprise COBOL 88
15. New reserved words, by compiler. 94
16. Steps for using variable-length RRDS 96
17. Key Enterprise COBOL compiler options for

VS COBOL II programs 97
18. Compiler options not supported in Enterprise

COBOL 98
19. Steps for using variable-length RRDS 104
20. New reserved words, by compiler. 106
21. Language elements different between CMPR2

and NOCMPR2 108
22. QSAM and VSAM file status codes with

CMPR2 and NOCMPR2 115
23. Rules for VSAM file definitions 119
24. Compiler options for IBM COBOL programs 143
25. Compiler options not available in Enterprise

COBOL 145

26. Steps for using variable-length RRDS 154
27. Compiler options not available in Enterprise

COBOL Version 5 157
28. The removed TEST suboptions. 158
29. Compiler options not available in Enterprise

COBOL Version 5 167
30. Compiler options new with Enterprise

COBOL Version 5 174
31. Compiler options changed with Enterprise

COBOL Version 5 176
32. Compiler options not available in Enterprise

COBOL Version 5 177
33. Runtime option changes with Enterprise

COBOL Version 5 184
34. Area where WORKING-STORAGE is located 192
35. How to find the PPA4, NORENT static area,

LE’s WSA, RENT static area, and program
static area in a dump? 192

36. Compiler options for programs that run
under CICS 211

37. Key compiler options for the integrated CICS
translator 213

38. Recommended compiler options for
applications with mixed COBOL programs. . 222

39. Reserved word comparison 234
40. COBOL statements dealing with primary

BLLs 255
41. Language Environment supported calls

between COBOL programs and assembler
programs under non-CICS; Yes indicates that
a call is supported.. 258

42. Language Environment supported calls
between COBOL programs and assembler
programs that run under CICS; Yes indicates
that a call is supported. 259

43. Option comparison 263
44. The predefined entity references 304

© Copyright IBM Corp. 1991, 2019 vii

||

||
|
|
||

||

viii Enterprise COBOL for z/OS, V5.2 Migration Guide

Preface

About this information
This information provides topics to help you to move to IBM® Enterprise COBOL
Version 5.1 and 5.2.

This information assumes that you have completed your runtime migration to
Language Environment®.

Terminology clarification
In this information, we use the term Enterprise COBOL as a general reference to:
v IBM Enterprise COBOL for z/OS® and OS/390®, Version 3 Release 1
v IBM Enterprise COBOL for z/OS and OS/390, Version 3 Release 2
v IBM Enterprise COBOL for z/OS, Version 3 Release 3
v IBM Enterprise COBOL for z/OS, Version 3 Release 4
v IBM Enterprise COBOL for z/OS, Version 4 Release 1
v IBM Enterprise COBOL for z/OS, Version 4 Release 2
v IBM Enterprise COBOL for z/OS, Version 5 Release 1
v IBM Enterprise COBOL for z/OS, Version 5 Release 2

In this information, we use the term IBM COBOL as a general reference to:
v COBOL/370, Version 1 Release 1
v COBOL for MVS™ & VM, Version 1 Release 2
v COBOL for OS/390 & VM, Version 2 Release 1
v COBOL for OS/390 & VM, Version 2 Release 2

See “Summary of changes to the COBOL compilers” on page xvii for further
details.

IBM COBOL compilers by name and version
Table 1. COBOL compiler name, version, release and product numbers

Compiler Release level
Product
number

OS/VS COBOL Version 1 Release 2
Modification 4

5740-CB1

VS COBOL II Version 1 Release 3
and Version 1 Release
4

5668-958

COBOL/370 Version 1 Release 1 5688-197

COBOL for MVS & VM Version 1 Release 2 5688-197

COBOL for OS/390 & VM Version 2 Release 1 5648-A25

COBOL for OS/390 & VM Version 2 Release 2 5648-A25

Enterprise COBOL for z/OS Version 3 Release 1 5655-G53

Enterprise COBOL for z/OS Version 3 Release 2 5655-G53

© Copyright IBM Corp. 1991, 2019 ix

|

|

||
|
|

||
|
|

|

Table 1. COBOL compiler name, version, release and product numbers (continued)

Compiler Release level
Product
number

Enterprise COBOL for z/OS Version 3 Release 3 5655-G53

Enterprise COBOL for z/OS Version 3 Release 4 5655-G53

Enterprise COBOL for z/OS Version 4 Release 1 5655-S71

Enterprise COBOL for z/OS Version 4 Release 2 5655-S71

Enterprise COBOL for z/OS Version 5 Release 1 5655-W32

Enterprise COBOL for z/OS Version 5 Release 2 5655-W32

To aid in moving your runtime library to Language Environment, you can find
information on how to run existing VS COBOL II and OS/VS COBOL load
modules under Language Environment, including link-edit requirements for
support and recommended runtime options for compatible behavior in the
Enterprise COBOL V4.2 Compiler and Runtime Migration Guide at
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf.

To aid in moving from your older COBOL compiler to Enterprise COBOL, this
information provides descriptions of the language differences between older
COBOL compilers and Enterprise COBOL and describes the IBM conversion tools
available to aid in converting your source programs to Enterprise COBOL
programs. It also describes other differences that might require changes in your
application development process in order to use Enterprise COBOL.

Acknowledgement
IBM would like to acknowledge the assistance of the GUIDE COBOL Migration
Task Force in the preparation of the OS/VS COBOL to VS COBOL II Migration
Guide. The task force provided ideas, experience-derived information, and
perceptive comments on the subject of OS/VS COBOL to VS COBOL II conversion.

The information received from this previous conversion experience, as well as
input from many experienced OS/VS COBOL and VS COBOL II IBM customers,
aided in the development of this Migration Guide. Without such assistance, this
information would have been much more difficult to develop.

Using your information
The information provided with Enterprise COBOL and Language Environment is
designed to help you do COBOL programming under z/OS.

Enterprise COBOL for z/OS Version 5
Table 2. The Enterprise COBOL for z/OS publications

Task Information

Understand warranty information Licensed Program Specifications

Install the compiler under z/OS Program Directory for Enterprise COBOL

Understand product changes and upgrade source to the latest version of
Enterprise COBOL for z/OS

Migration Guide.

x Enterprise COBOL for z/OS, V5.2 Migration Guide

|||

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

Table 2. The Enterprise COBOL for z/OS publications (continued)

Task Information

Upgrade run time environment to Language Environment Note: If you have not yet migrated
your runtime library to Language
Environment, consult the Enterprise
COBOL V4.2 Compiler and Runtime
Migration Guide at
http://publibfp.dhe.ibm.com/epubs/
pdf/igy3mg50.pdf for help.

Customize Enterprise COBOL for z/OS Enterprise COBOL Customization Guide

Prepare and test your programs and get details about compiler options Enterprise COBOL Programming Guide

Get details about COBOL syntax and specifications of language elements Enterprise COBOL Language Reference

Language Environment element of z/OS
Table 3. The Language Environment element of z/OS publications

Task Information

Evaluate the product Language Environment Concepts
Guide

Install Language Environment z/OS Program Directory

Understand Language Environment program models and concepts Language Environment Programming
Guide

Find syntax for Language Environment runtime options and callable services Language Environment Programming
Reference

Debug applications that run with Language Environment, get details about
runtime messages, and diagnose problems with Language Environment

Language Environment Debugging
Guide and Run-Time Messages

Migrate applications from one release of Language Environment to another. Language Environment Run-Time
Migration Guide

Develop interlanguage communication (ILC) applications Language Environment Writing
Interlanguage Communication
Applications

Learn about the concepts and use of Common Debug Architecture (CDA) Common Debug Architecture User’s
Guide

Get details about APIs in the Debug Data Program Information library
(llibddpi).

Common Debug Architecture Library
Reference

Get details about the IBM extensions to the DWARF and ELF APIs in the
DWARF 4 standard.

DWARF/ELF Extensions Library
Reference

Summary of changes to this information
This section lists the major changes that have been made to each edition of this
migration guide since IBM COBOL for OS/390 & VM Version 2 Release 1.

Changes in GC14-7383-03 (March 2019)
Changes in GC14-7383-03 (March 2019)
v Added a support page link where lists the Enterprise COBOL V4 PTFs to

support the migration to Enterprise COBOL V5 or V6. For details, see
Chapter 13, “Upgrading from Enterprise COBOL Version 4,” on page 161.

Preface xi

|

|

|
|
|

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

Changes in GC14-7383-03 (September 2018)
v Added information about two new suboptions ALPHNUM and NOALPHNUM

of the NUMCHECK(ZON) compiler option, which control whether the compiler
will generate code for an implicit numeric class test for zoned decimal data
items that are being compared with an alphanumeric data item, alphanumeric
literal or alphanumeric figurative constant. The changes are introduced in
Enterprise COBOL Version 5 Release 2 with PTF for APAR PH01241 installed.

v Added information about how to find WORKING-STORAGE SECTION in
Enterprise COBOL V5. For details, see “WORKING-STORAGE SECTION
changes” on page 189.

Changes in GC14-7383-03 (July 2018)
v Replaced the Edge Portfolio Analyzer with a free and open source COBOL

Analyzer. For details, see “Free and open source COBOL Analyzer” on page 256.
v Clarified that compiler migration is required for OS/VS COBOL programs and

VS COBOL II programs compiled with NORES in “Compiler migration” on page
20.

Changes in GC14-7383-03 (May 2018)
v Updated information in “CSD setup differences with Enterprise COBOL V5” on

page 209 because certain CICS TS versions provide the system autoinstall
capability for LE programs and CICS will create the program definition
automatically when the programs are first loaded.

v Clarified that the separate CICS translator is still shipped with current CICS
products but is no longer being enhanced in “Migrating from the separate CICS
translator to the integrated translator” on page 212.

Changes in GC14-7383-03 (November 2017)
v Updated behaviour of the ZONEDATA compiler option in “Compiler option

changes in Enterprise COBOL Version 5” on page 174. This change is introduced
in Enterprise COBOL Version 5 Release 2 with PTF for APAR PI90458 installed.

v Clarified the IGZEBST requirements in Chapter 1, “Introducing the new compiler
and run time,” on page 3 and several other topics.

Changes in GC14-7383-03 (September 2017)
v Added information about a new VSAMOPENFS compiler option that affects the

user file status reported from successful VSAM OPEN statements that require
verified file integrity check. The VSAMOPENFS option is introduced in
Enterprise COBOL Version 5 Release 2 with PTF for APAR PI85868 installed.

v Added information about two new suboptions MSG and ABD of the SSRANGE
compiler option, which control the runtime behavior of the COBOL program
when a range check fails. MSG and ABD are introduced in Enterprise COBOL
Version 5 Release 2 with PTF for APAR PI86343 installed.

Changes in GC14-7383-03 (June 2017)
v Added information about a new NUMCHECK compiler option that controls

whether to generate extra code to validate data items when they are used as
sending data items. The NUMCHECK option is introduced in Enterprise COBOL
Version 5 Release 2 with PTF for APAR PI81006 installed.

xii Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|
|
|
|
|
|

|
|
|

|

|
|

|
|
|

|

|
|
|
|

|
|
|

|

|
|
|

|
|

|

|
|
|
|

|
|
|
|

|

|
|
|
|

Changes in GC14-7383-03 (April 2017)
v Updated the code sample and further clarified the behavior changes in

Enterprise COBOL V5 and V6 for programs with parameter length mismatches.
See "“Error behavior changes for incorrect programs” on page 187".

v Added information that in V4, when a COMP-5 data-item value (signed or
unsigned) is moved into a PIC X(n) data item, an incorrect value will be moved.
This is corrected in Enterprise COBOL V5 and V6. See "“COBOL source code
differences in Enterprise COBOL Version 5” on page 173".

v Updated information about calling a ILBOABN0 callable service with Enterprise
COBOL V5 and later versions in "“Changes at run time with IBM Enterprise
COBOL for z/OS” on page 182".

v Added information about using the XML System Services parser to transforms
some characters or character combinations to x'15' when parsing EBCDIC
documents in "Appendix L, “Migrating from XMLPARSE(COMPAT) to
XMLPARSE(XMLSS),” on page 297".

Changes in GC14-7383-03 (January 2017)
v Added information about a new warning message that will be issued when a

call to ILBOABN0 callable service is encountered in the source program in
"“Changes at run time with IBM Enterprise COBOL for z/OS” on page 182".

Changes in GC14-7383-03 (September 2016)
v Added information about a new INITCHECK compiler option that controls

whether to check for uninitialized data items and issue warning messages when
they are used without being initialized. The INITCHECK option is introduced in
Enterprise COBOL Version 5 Release 2 with PTF for APAR PI69197 installed.

Changes in GC14-7383-03 (July 2015)

Added information about compiler option changes:
v New option: ZONECHECK(MSG|ABD)
v Modified option: ZONEDATA. New suboption of NOPFD is added to the ZONEDATA

compiler option. ZONEDATA(NOPFD) lets the compiler generate code that performs
comparisons of zoned decimal data in the same manner as COBOL V4 does
when using NUMPROC(NOPFD|PFD) with COBOL V4.

Changes in GC14-7383-03 (February 2015)
v Added information about Enterprise COBOL V5.2 changes to the chapter "What

is new and different with Enterprise COBOL Version 5", and the changes mainly
fall into the following topics:
– Source code differences
– Compiler options changes
– Compilation restrictions for user-written condition handlers
– Variable length records - wrong length READ
– Using object oriented COBOL or interoperating with C programs

v Added information about upgrading Enterprise COBOL Version 3 or Version 4
programs that have XML PARSE statements

v Added information about accessing VSAM data sets with the extended
addressability attribute, including for existing COBOL programs compiled with
earlier versions than Enterprise COBOL for z/OS, V5.2.

Preface xiii

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|

|
|
|
|

|

|

|

|
|
|
|

|

|
|
|

|

|

|

|

|

|
|

|
|
|

v Added information to appendix on how to save and restore the high halves of
General Purpose Registers (GPRs) in assembler programs that will call or be
called by Enterprise COBOL V5.

Changes in GC14-7383-02 (March 2019)

Changes in GC14-7383-02 (March 2019)
v Added a support page link where lists the Enterprise COBOL V4 PTFs to

support the migration to Enterprise COBOL V5 or V6. For details, see
Chapter 13, “Upgrading from Enterprise COBOL Version 4,” on page 161.

Changes in GC14-7383-02 (September 2018)
v Added information about how to find WORKING-STORAGE SECTION in

Enterprise COBOL V5. For details, see “WORKING-STORAGE SECTION
changes” on page 189.

Changes in GC14-7383-02 (May 2018)
v Updated information in “CSD setup differences with Enterprise COBOL V5” on

page 209 because certain CICS TS versions provide the system autoinstall
capability for LE programs and CICS will create the program definition
automatically when the programs are first loaded.

v Clarified that the separate CICS translator is still shipped with current CICS
products but is no longer being enhanced in “Migrating from the separate CICS
translator to the integrated translator” on page 212.

Changes in GC14-7383-02 (April 2017)
v Updated information about calling a ILBOABN0 callable service with Enterprise

COBOL V5 and later versions in “Changes at run time with IBM Enterprise
COBOL for z/OS” on page 182.

Changes in GC14-7383-02 (February 2017)
v Added information about a new warning message that will be issued when a

call to ILBOABN0 callable service is encountered in the source program in
“Changes at run time with IBM Enterprise COBOL for z/OS” on page 182.

Changes in GC14-7383-02 (March 2014)

Added back the support for AMODE 24 execution of COBOL programs, except for
a few exception cases. Many programs that are compiled by Enterprise COBOL
5.1.1 execute in either AMODE 31 or AMODE 24.

Changes in GC14-7383-00 (June 2013)
This migration guide has been reorganized for Enterprise COBOL Version 5.1. If
you have not yet completed your runtime migration to Language Environment,
please refer to the previous version of this information. You can use the Enterprise
COBOL V4.2 Compiler and Runtime Migration Guide at http://
publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf for help in completing your
runtime migration.

Primarily, the following changes have been made to this Migration Guide:
v Removal of the information related to Language Environment
v Addition of specific chapters for migrating from Enterprise COBOL Version 3

and Enterprise COBOL Version 4

xiv Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|

|

|

|
|
|

|

|
|
|

|

|
|
|
|

|
|
|

|

|
|
|

|

|
|
|

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

v Addition of a section on Enterprise COBOL Version 5
v Addition of a section on upgrading your COBOL compiler along with other IBM

products. That includes information about Debug Tool, CICS®, and Db2®. Please
see Part 5, “Enterprise COBOL migration and other IBM products,” on page 199
for more information.

There is a lot of information in this guide but most of it is not needed by most
customers. For example, if you are moving from Enterprise COBOL Version 4 and
you have completed your runtime migration for all applications, you only need to
look at a few sections. For details, see Chapter 13, “Upgrading from Enterprise
COBOL Version 4,” on page 161, Chapter 14, “Compiling Enterprise COBOL
Version 4 programs,” on page 167, and Chapter 15, “Changes with IBM Enterprise
COBOL for z/OS, Version 5,” on page 171.

Changes in GC23-8527-01 (August 2009)
Compiler
v Added information about integrated Db2 coprocessor
v Updated information about migrating from XMLPARSE(COMPAT) to

XMLPARSE(XMLSS), for example, changes in the handling of several XML
events

v Updated information about the differences in parsing behavior when you
compile using XMLPARSE(XMLSS)

v Added new reserved words
v Added new compiler options
v Added information to appendix on commonly asked questions and answers:

– Information about COBOL program calls
– Information about running existing COBOL applications with Java™ 5 or Java

6

Run time
v Updated information about region-wide defaults
v Updated information about TEST option
v Updated information about Language Environment STORAGE(00) option

Information about CICS has been corrected.

Miscellaneous maintenance and editorial changes have been made; for example,
Appendix B, “COBOL reserved word comparison,” on page 233 and Appendix F,
“Compiler limit comparison,” on page 281 have been updated.

Changes in GC23-8527-00 (December 2007)

Compiler
v Added section on migrating XML PARSE from Enterprise COBOL Version 3 to

Enterprise COBOL Version 4 (Migrating from XMLPARSE(COMPAT) to
XMLPARSE(XMLSS)).

v Added information about the new TEST suboptions of Enterprise COBOL
Version 4

v Added new reserved words
v Added information to section on migrating from CMPR2 to NOCMPR2:

– Fixed file attributes and DCB= parameters of JCL

Preface xv

– OPEN statement failing for QSAM files (FILE STATUS 39)
– OPEN statement failing for VSAM files (FILE STATUS 39)

v Added information to appendix on DB2® coprocessor integration
– Additional differences from separate precompiler

Run time
v Added information about removal of SIMVRD runtime option support for

Enterprise COBOL Version 4 Release 1 programs.

Changes in GC27-1409-05 (November 2006)
v Updated the documentation of differences between Db2 precompiler and

coprocessor.
v Added compiler option SQLCCSID.

Changes in GC27-1409-04 (March 2006)
v Added to the documentation of differences between Db2 precompiler and

coprocessor.
v Added a section on migrating SEARCH ALL statements to V3R4.

Changes in GC27-1409-03 (July 2005)
v Added compiler option MDECK.
v Added new reserved words.
v Added SQL code differences between Db2 precompiler and coprocessor.
v Changes to data-item sizes.

Changes in GC27-1409-02 (December 2003)
v Applied service updates to the information

Changes in GC27-1409-01 (September 2002)

Compiler
v Added information about the use of the SEPARATE suboption with the TEST(. .

.,SYM,. . .) compiler option.

Run time
v Clarified the information about file handling for COBOL programs with

RECORDING MODE U under OS/390, Version 2 Release 10.
v Added information about the change in the amount of space that is used for an

output file that is defined as RECFM=U under OS/390, Version 2 Release 10.
v Added information about dynamic calls to assembler programs under Language

Environment for z/OS, Version 1 Release 2 and later.

Changes in GC27-1409-00 (November 2001)

Compiler
v Removed various compiler options, including the CMPR2 compiler option
v Added new reserved words
v Added information about the new integrated CICS translator
v Removed OO COBOL syntax and programming model based on SOM

xvi Enterprise COBOL for z/OS, V5.2 Migration Guide

v Added information about migrating to the Enterprise COBOL compiler

Run time
v Added information about the change in behavior for DATA(31) programs
v Added information about CEEDUMP absent from applications with assembler

programs that use the DUMP macro
v Added information about the change in file handling for COBOL programs with

RECORDING MODE U
v Added information about calling between assembler and COBOL

Changes in GC26-4764-05 (September 2000)

Compiler
v Added newly discovered undocumented extensions and improved many

existing entries in Chapter 5, “Upgrading OS/VS COBOL source programs,” on
page 45

v Added new reserved words
v Added information about migrating to the V2R2 compiler

Run time
v Added description of the new default for runtime option ABTERMENC (ABEND

for Language Environment for OS/390 V2R9 and later) and the new suboptions
for TERMTHDACT available in Language Environment for OS/390 V2R7 and
later

v Added information about Language Environment region-wide runtime options
v Updated the virtual storage requirements
v Updated the CICS considerations:

– Performance
– SORT interface change
– DISPLAY statement

v Updated information about upgrading Language Environment release levels

Miscellaneous maintenance and editorial changes have been made.

Summary of changes to the COBOL compilers
This section lists the main changes that have been made to IBM host COBOL
compilers.

Changes in IBM Enterprise COBOL for z/OS, Version 5
Release 2 with PTFs installed

New, changed, and removed compiler options
v The following compiler options are new:

– PI40822: ZONECHECK
– PI69197: INITCHECK
– PI81006: NUMCHECK
– PI85868: VSAMOPENFS

v The following compiler options are modified:

Preface xvii

|

|

|

|

|

|

|

|

|

– PI40853: ZONEDATA: New suboption of NOPFD is added to the ZONEDATA compiler
option. ZONEDATA=NOPFD lets the compiler generate code that performs
comparisons of zoned decimal data in the same manner as COBOL V4 does
when using NUMPROC=NOPFD|PFD with COBOL V4.

– PI53044: SSRANGE: New suboptions ZLEN and NOZLEN are added to the SSRANGE
compiler option to control how the compiler checks reference modification
lengths.

– PI86343: SSRANGE: New suboptions MSG and ABD are added to the SSRANGE
compiler option to control how the compiler checks reference modification
lengths.

– PI90458: ZONEDATA: The ZONEDATA option is updated to affect the behaviour of
MOVE statements, comparisons, and computations for USAGE DISPLAY or
PACKED-DECIMAL data items that could contain invalid digits, an invalid sign
code, or invalid zone bits.

– PI97835: NUMCHECK(PAC): For packed decimal (COMP-3) data items that have an
even number of digits, the unused bits are checked for zeros.

– PH01241: NUMCHECK(ZON): New suboptions ALPHNUM | NOALPHNUM are added to
the NUMCHECK(ZON) option to control whether the compiler will generate code
for an implicit numeric class test for zoned decimal data items that are being
compared with an alphanumeric data item, alphanumeric literal or
alphanumeric figurative constant.

v The following compiler option is removed:
– PI81006: ZONECHECK is deprecated and can no longer be specified in

IGYCDOPT. NUMCHECK=(ZON) gives the same results as ZONECHECK used to.

Changes in IBM Enterprise COBOL for z/OS, Version 5
Release 2

New and changed options
v The following compiler options are new:

– COPYRIGHT

– QUALIFY(COMPAT|EXTEND)

– SERVICE

– SQLIMS

– VLR(COMPAT|STANDARD)

– XMLPARSE(XMLSS|COMPAT)

– ZONEDATA(PFD|MIG)

v The following compiler options are modified:
– ARCH: ARCH(6) is no longer accepted. A new higher level of ARCH(11) is

accepted, and ARCH(7) is the default.
– MAP: New suboptions HEX and DEC are added to the MAP compiler option to

control whether hexadecimal or decimal offsets are shown for MAP output in
the compiler listing. It eases your migration to Enterprise COBOL V5.2 if your
programs are compiled with Enterprise COBOL V4 or earlier versions.

v The following compiler option is removed:
– SIZE

New and changed functions
v The compatibility-mode COBOL XML parser from the COBOL library is

supported. You can specify the XMLPARSE(XMLSS|COMPAT) compiler option to

xviii Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|

|

|

|

|
|

choose between parsing with the z/OS XML System Services parser, or with the
compatibility-mode COBOL XML parser. This feature can ease the migration to
the Enterprise COBOL V5 compiler for programs with XML PARSE statements
that were compiled with Enterprise COBOL V3, or with V4 compiler with the
XMLPARSE(COMPAT) compiler option.

v Enterprise COBOL applications that use object-oriented syntax for Java
interoperability are now supported with Java 6, Java 7 and Java 8. Java SDK
1.4.2 and Java 5 are no longer supported.

New and changed statements
v The new CALLINTERFACE directive specifies the interface convention for CALL

and SET statements. The convention specified stays in effect until another
CALLINTERFACE directive is encountered in the source. The CALLINTERFACE
directive has three suboptions: DLL, DYNAMIC, and STATIC.

v The EXIT statement includes the following new formats, which provide a
structured way to exit without using a GO TO statement. The new formats are
part of the 2002 COBOL Standard.
– EXIT PERFORM for exiting from an inline PERFORM statement
– EXIT PARAGRAPH for exiting from the middle of a paragraph
– EXIT SECTION for exiting from a section

v A new format of the SORT statement, the table SORT statement, arranges table
elements in a user-specified sequence. It is part of the 2002 COBOL Standard.

v New keywords LEADING and TRAILING are added to the REPLACING phrase
of the COPY statement and the REPLACE statement to improve partial-word
replacement operations. The new keywords are part of the 2002 COBOL
Standard.

v A new keyword VOLATILE is added to the format 1 data description entry. The
VOLATILE clause indicates that a data item's value can be modified or
referenced in ways that the compiler cannot detect, such as by a Language
Environment (LE) condition handler routine or by some other asynchronous
process or thread. Thus, optimization is restricted for the data item.

v New syntaxes are introduced to the XML GENERATE statement. The WHEN
phrase from the explicit form of the SUPPRESS phrase can be omitted to
unconditionally suppress identifier-8 in the output of the XML Generate
statement. If the WHEN phrase is omitted, identifier-8 can be a group data item.
In addition, the generic-suppression-phrase of the XML GENERATE statement
provides a convenient way to exclude entire classes and categories of data items
from the generated XML output based on suppression criteria. The data items to
which the suppression specifications apply and that meet the criteria at run time
will be excluded. CONTENT is treated as a distinct type for suppression.

Changes in IBM Enterprise COBOL for z/OS, Version 5
Release 1 Modification 1

v Except for a few exception cases, AMODE 24 execution of COBOL programs is
supported. Many programs compiled by IBM Enterprise COBOL for z/OS V5.1.1
will execute in AMODE 31 or AMODE 24.

v A new compiler option, SQLIMS, enables the new IMS SQL coprocessor (called
SQL statement coprocessor by IMS). The new coprocessor handles your source
programs that contain embedded SQLIMS statements.

v New fatal and warning exception codes are added for XML PARSE exceptions.

Preface xix

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|

|

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

v The LIST option output in the compiler listing contains a new Special Register
Table that provides the location information for all the COBOL Special Register
variables.

With current service applied, Enterprise COBOL V5.1.0 appears to be V5.1.1 and
has the following new compiler options:
v SQLIMS

v VLR(COMPAT|STANDARD)

v XMLPARSE(XMLSS|COMPAT)

v New suboptions HEX and DEC are added to the MAP compiler option to control
whether hexadecimal or decimal offsets are shown for MAP output in the
compiler listing.

Changes in IBM Enterprise COBOL for z/OS, Version 5
Release 1

New and changed COBOL function

The XML function supported by IBM Enterprise COBOL for z/OS has been
enhanced:
v The XML GENERATE statement has been extended with new syntax that gives

the programmer more flexibility and control over the form of the XML
document that is generated:
– The NAME phrase has been added to allow user-supplied element and

attribute names.
– The TYPE phrase has been added to give the user control of attribute and

element generation.
– The SUPPRESS phrase has been added to allow suppression of empty

attributes and elements.
v XML parsing support has been enhanced with a special register,

XML-INFORMATION, to easily determine whether the XML content delivered
for an XML event is complete or will be continued on the next event.

v The compatibility-mode COBOL XML parser from the COBOL library is no
longer supported for use by Enterprise COBOL V5 programs. XML PARSE
statements in V5 programs always use the XML parser in z/OS XML System
Services.

New support for UNBOUNDED tables and groups enables top-down mapping of
data structures between XML and COBOL applications

Unicode support has been enhanced in this release with the addition of 6 new
intrinsic function:
v ULENGTH
v UPOS
v USUBSTR
v USUPPLEMENTERY
v UVALID
v UWIDTH

A new inline comment indicator (the character string '*>') can be coded to indicate
that the ensuing text on a line is a comment.

xx Enterprise COBOL for z/OS, V5.2 Migration Guide

Enterprise COBOL Version 5.1 corrects READ statement processing of
wrong-length records.

The Millennium Language Extensions are no longer supported, and the removed
elements are:
v DATEVAL intrinsic function
v UNDATE intrinsic function
v YEARWINDOW intrinsic function
v DATEPROC compiler option
v YEARWINDOW compiler option

To be compatible with the convention used by C and C++, the linkage convention
for returning a doubleword binary item specified in the RETURNING phrase
PROCEDURE DIVISION header and the CALL statement is changed. If a COBOL
program returns a doubleword binary item via a PROCEDURE DIVISION
RETURNING header to a calling COBOL program with a CALL ... RETURNING
statement, an issue occurs if only one of the programs is recompiled with
Enterprise COBOL V5. Both the called and calling programs must be recompiled
with Enterprise COBOL V5 together, so that the linkage convention for the
RETURNING item is consistent.

Format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE..., and the syntax:
GO TO MORE-LABELS are no longer supported.

Option changes
v The following compiler options are new:

– AFP(VOLATILE | NOVOLATILE)

– ARCH(n)

– DISPSIGN(SEP | COMPAT)

– HGPR(PRESERVE | NOPRESERVE)

– MAXPCF(nnn)

– STGOPT | NOSTGOPT
v The following compiler options are modified:

– The MDECK option no longer has a dependency on the LIB option, as the
compiler behaves as though the LIB option is always enabled.

– The MIG suboption of the NUMPROC compiler option is no longer supported
– The compiled-in range checks cannot be disabled at run time using the

runtime option CHECK(OFF).
– Execution of NORENT programs above the 16 MB line is not supported.
– The HOOK | NOHOOK and SEPARATE | NOSEPARATE suboptions of the TEST

compiler option are no longer supported. Those suboptions continue to be
tolerated to ease migration. New suboptions SOURCE and NOSOURCE are added
to the TEST compiler option.

– The NOTEST option is enhanced to include the suboptions DWARF and NODWARF.
– The EXIT compiler option is no longer mutually exclusive with the DUMP

compiler option, and the compiler exits rules are updated.
– The OPTIMIZE option is modified to allow several level of optimization. The

previous OPTIMIZE option format is deprecated but is tolerated for
compatibility.

– The format and contents of listing generated from the LIST option are new

Preface xxi

|
|
|
|
|
|
|
|
|

– The format and contents of the listing output generated from the MAP option
are changed

v Support for the following compiler options has been removed:
– DATEPROC
– LIB
– SIZE(MAX)
– YEARWINDOW
– XMLPARSE

Compiler behavior changes

There have been a number of changes to Enterprise COBOL V5.1 that result in
different behaviors.
v AMODE 24 execution of programs compiled with Enterprise COBOL V5.1.0 is no

longer supported. Enterprise COBOL V5.1.0 executable modules must be AMODE
31.

v The IGZERRE and ILBOSTP0 interfaces for managing a reusable COBOL
environment are not supported for applications containing programs compiled
with Enterprise COBOL V5.

v The IGZBRDGE macro, for converting static calls to dynamic calls, is not supported
for programs compiled with Enterprise COBOL V5.

v The compatibility-mode COBOL XML parser from the COBOL library, the old
parser from Enterprise COBOL V3, is no longer supported for use by Enterprise
COBOL V5 programs. XML PARSE statements in V5 programs always use the
z/OS System Services XML parser (XMLSS).

v Enterprise COBOL Version 5 now requires Language Environment at
compilation time. If the Language Environment data sets SCEERUN and SCEERUN2
are not installed in the MVS LNKLST or LPALST, they must be included in the
STEPLIB or JOBLIB concatenation for the compilation.

v Enterprise COBOL Version 5.1 has a new Language Environment member ID, 4.
Prior versions of COBOL use ID 5.

v Enterprise COBOL Version 5 programs have some restrictions with
interoperability with older versions of COBOL. For details see, “Interoperability
with older levels of IBM COBOL programs” on page 21.

v COBOL programs with the following characteristics may behave differently with
Enterprise COBOL V5 than with prior versions:
– Programs that use unsupported COBOL language syntax.
– Programs referencing data items that, at run time, contain values not

conforming to the PICTURE clause on the data description entry. For
example:
- a fullword binary item with picture S9(6) USAGE BINARY, containing an

oversize value of +123456789 (unless the TRUNC(BIN) option was specified)
- a two-byte PACKED-DECIMAL item with picture S99, containing an

oversize value of 123 (such as, 123C in hexadecimal).
- a packed decimal or zoned decimal item containing an invalid or

non-preferred sign, that does not conform to the sign requirements of the
data description entry and the NUMPROC(PFD) compiler option setting in
effect.

– Programs with undiagnosed subscript range errors (when the SSRANGE
compiler option was not specified), that reference storage outside the storage
allocation for the base data item.

xxii Enterprise COBOL for z/OS, V5.2 Migration Guide

– Applications with low-level dependencies on specific generated code
sequences, register conventions, or internal IBM control blocks may behave
differently with Enterprise COBOL V5 than with prior versions.

– It is illegal to specify a value greater than integer-2 for the object of an
OCCURS DEPENDING ON clause, and thus the behavior is undefined.
However, Enterprise COBOL V5.1 behaves differently than prior versions
when it occurs.

v VSAM record areas for reentrant COBOL programs are allocated above 16 MB if
DATA(31) is enabled. Programs that pass data in VSAM file records as CALL ...
USING BY REFERENCE parameters to AMODE 24 subprograms may be impacted.
Such programs can be recompiled with the DATA(24) compiler option, or the
Language Environment HEAP(BELOW) option can be used, to ensure that the
records are addressable by the AMODE 24 programs.

v Compile-time storage requirements are substantially increased, compared to
prior versions of Enterprise COBOL. See the discussion of the SIZE option. This
is particularly true at higher optimization levels, that is, programs compiled with
the OPT(1) or OPT(2) compiler option.

v Compile-time CPU time requirements are substantially increased, compared to
prior versions of Enterprise COBOL.

v Compile time and run time diagnostic messages may differ, and may be
generated at different times or locations.
– Presence or absence of informational and warning level diagnostics may differ
– Diagnostics for programs that define excessive and unsupported amounts of

storage may be diagnosed either by the binder at bind time, or by Language
Environment at run time, instead of by the compiler at compilation time.

v Compiler listing format and contents differ from prior versions of Enterprise
COBOL.

Application performance changes

The OPTIMIZE option has been changed to support several levels of performance
optimization for your application. The suboptions have also been changed. The
previous OPTIMIZE option format is deprecated but is tolerated for compatibility.

Note: Although OPT(0) is equivalent to the old NOOPTIMIZE option in most ways,
OPT(0) removes some unreachable code that was not previously removed with
NOOPTIMIZE.

Debugging changes

When the TEST option is specified, DWARF debugging information is included in
the application module.

With NOLOAD debug segments in the program object, Enterprise COBOL V5
debug data always matches the executable file, and is always available without
giving lists of data sets to search, and does not increase the size of the loaded
program.

If you specify the TEST(SOURCE) option, the DWARF debug information includes
the expanded source code, and the compiler listing is not needed by IBM Debug
Tool. When the TEST(NOSOURCE) is specified, the generated DWARF debugging
information does not include the expanded source code.

Preface xxiii

You can use the NOTEST(DWARF) option to include basic DWARF diagnostic
information in the application module. This enables application failure analysis
tools, such as CEEDUMP and IBM Fault Analyzer.

Packaging and JCL changes

There have been a number of changes to the packaging, installation and JCL with
Enterprise COBOL V5.1.

The SIGYCOMP data set is now a PDSE, rather than a PDS data set as in prior
versions.

Enterprise COBOL Version 5.1 requires additional data sets
v When compiling under z/OS TSO or batch, the COBOL compiler now requires

15 utility data sets, SYSUT1 to SYSUT15
v The SYSMDECK data set is now required for all compilations. SYSMDECK may be

specified as a utility (temporary) data set if the NOMDECK option is specified.
When MDECK(...) is specified, the SYSMDECK DD allocation must specify a
permanent data set.

v The alternate DDNAME list parameter used when the COBOL compiler is
invoked from an assembly language program has been expanded with entries
for the additional work data sets.

The catalogued procedures that ship with Enterprise COBOL Version 5.1 have been
modified.
v IGYWC
v IGYWCL
v IGYWCLG

The following JCL catalogued procedures are no longer supported. Because they all
use the Language Environment Prelinker or the DFSMS Loader, which are no
longer supported.
v IGYWCG
v IGYWCPG
v IGYWCPL
v IGYWCPLG
v IGYWPL

Restrictions

If you use COBOL for IMS exit routines, Enterprise COBOL V5.1 can compile
programs only when the exit is an assembler program in a PDS data set that
LOADs and calls a COBOL V5.1 program in a PDSE. For workarounds to handle
the restriction, see Chapter 20, “Moving IMS programs to Enterprise COBOL V5,”
on page 221.

Changes in IBM Enterprise COBOL for z/OS, Version 4
Release 2

v New and enhanced XML PARSE capabilities are available when you use the
z/OS System Services XML parser:
– You can parse documents with validation against an XML schema when you

use the VALIDATING phrase of the XML PARSE statement.

xxiv Enterprise COBOL for z/OS, V5.2 Migration Guide

– The performance of nonvalidating parsing with the XMLPARSE(XMLSS)
compiler option is improved compared to the performance of nonvalidating
parsing with the XMLPARSE(XMLSS) compiler option in Enterprise COBOL
Version 4 Release 1.

– Character processing is enhanced for any XML document that contains a
reference to a character that is not included in the single-byte EBCDIC code
page of the document.

v A facility for customizing compiler messages (changing their severity or
suppressing them), including FIPS (FLAGSTD) messages, is made possible by a
new suboption, MSGEXIT, of the EXIT compiler option.

v A new compiler option, BLOCK0, activates an implicit BLOCK CONTAINS 0
clause for all eligible QSAM files in your program.

v The underscore character (_) is now supported in user-defined words such as
data-names and program-names. Underscores are also supported in the literal
form of program-names.

v If you use the integrated CICS translator, the compiler listing will now show the
CICS options that are in effect.

v Enterprise COBOL applications that use object-oriented syntax for Java
interoperability are now supported with Java 5 and Java 6 in addition to the
Java SDK 1.4.2.

Changes in IBM Enterprise COBOL for z/OS, Version 4
Release 1

v The XML GENERATE statement has been extended with new syntax that gives
the programmer more flexibility and control over the form of the XML
document that is generated:
– The WITH ATTRIBUTES phrase, which causes eligible items in the XML

document to be generated as XML attributes instead of as elements.
– The WITH ENCODING phrase, which allows the user to specify the encoding

of the generated document.
– The WITH XML-DECLARATION phrase, which causes the version and

encoding information to be generated in the document.
– The NAMESPACE and NAMESPACE-PREFIX phrases, which allow

generation of XML documents that use XML namespaces.
– The XML GENERATE statement now supports generation of XML documents

encoded in UTF-8 Unicode.
v XML PARSE support has been enhanced:

– The z/OS System Services XML parser is now supported as an alternative to
the existing XML parser that is part of the COBOL library

– The z/OS System Services XML parser provides the following benefits:
- Availability of the latest IBM parsing technology for COBOL users.
- Offloading of COBOL XML parsing to zAAP specialty processors.
- Improved support for parsing XML documents that use XML namespaces.
- Direct support for parsing XML documents that are encoded in UTF-8

Unicode.
- Support for parsing very large XML documents, a buffer at a time.

– Four new special registers are introduced for namespace processing during
execution of XML PARSE statements.

Preface xxv

– The XML PARSE statement has been extended with new syntax. The new
WITH ENCODING and RETURNING NATIONAL phrases give the
programmer control over the assumed encoding of input XML documents, to
facilitate parsing in Unicode.

– A new compiler option, XMLPARSE, has been created to control whether the
z/OS System Services parser or the existing COBOL parser is used for XML
PARSE statements. With the XMLPARSE(COMPAT) option, XML parsing is
fully compatible with Enterprise COBOL Version 3. With the default
XMLPARSE(XMLSS) option, the z/OS System Services parser is used and
new XML parsing capabilities are enabled.

v Performance of COBOL application programs has been enhanced by exploitation
of new z/Architecture® instructions. The performance of COBOL Unicode
support (USAGE NATIONAL data) has been significantly improved.

v DB2 support has been enhanced in this release, including DB2 V9 exploitation
and improvements in coprocessor integration and usability:
– Support for new SQL data types and new SQL syntax provided by DB2 V9
– DB2 precompiler options are shown in the compiler listing (DB2 V9 only)
– SQLCA and SQLDA control blocks are expanded in the compiler listing (all

DB2 releases)
– A new compiler option SQLCCSID is provided to coordinate the coded

character set id (CCSID) between COBOL and DB2
v Support for DFSMS large-format data sets
v Debugging enhancements:

– Debug Tool V8 enablement, new debugging commands
– GOTO/JUMPTO in optimized code, new TEST suboption EJPD

v Compiler options can be specified in a data set (OPTFILE option)
v Cross-reference of COPY statements, libraries, and data sets in compiler listing

Changes in IBM Enterprise COBOL for z/OS, Version 3
Release 4: service updates, November 2006

v PK31411: A new compiler option, SQLCCSID, which works in conjunction with
the DB2 coprocessor, determines whether the CODEPAGE compiler option
influences the processing of SQL statements in COBOL programs. SQLCCSID
was added via APAR PK31411.

v PK16765: Corrections to the behavior of the SEARCH ALL statement have been
made.
With current service applied, specifically the PTF for APAR PK16765, new
compiler diagnostic messages and runtime diagnostic messages have been added
to assist in identifying programs and SEARCH ALL statements that are
potentially impacted by these corrections and may require modification in order
to migrate to V3R4. If you have this PTF on your compiler, the listing header
and object program will show Version 3 Release 4 Modification 1.

Changes in IBM Enterprise COBOL for z/OS, Version 3
Release 4

v Several limits on COBOL data-item size have been significantly raised, for
example:
– The maximum data-item size has been raised from 16 MB to 128 MB.
– The maximum PICTURE symbol replication has been raised to 134,217,727.
– The maximum OCCURS integer has been raised to 134,217,727.

xxvi Enterprise COBOL for z/OS, V5.2 Migration Guide

(For full details about changed compiler limits, see the COBOL Language
Reference.) This support facilitates programming with large amounts of data, for
example:
– DB2/COBOL applications that use DB2 BLOB and CLOB data types
– COBOL XML applications that parse or generate large XML documents

v Support for national (Unicode UTF-16) data has been enhanced. Several
additional kinds of data items can now be described implicitly or explicitly as
USAGE NATIONAL:
– External decimal (national decimal) items
– External floating-point (national floating-point) items
– Numeric-edited items
– National-edited items
– Group (national group) items, supported by the GROUP-USAGE NATIONAL

clause
v Many COBOL language elements support the new kinds of UTF-16 data, or

newly support the processing of national data:
– Numeric data with USAGE NATIONAL (national decimal and national

floating point) can be used in arithmetic operations and in any language
constructs that support numeric operands .

– Edited data with USAGE NATIONAL is supported in the same language
constructs as any existing edited type, including editing and de-editing
operations associated with moves.

– Group items that contain all national data can be defined with the
GROUP-USAGE NATIONAL clause, which results in the group behaving as
an elementary item in most language constructs. This support facilitates use
of national groups in statements such as STRING, UNSTRING, and INSPECT.

– The XML GENERATE statement supports national groups as receiving data
items, and national-edited, numeric-edited of USAGE NATIONAL, national
decimal, national floating-point, and national group items as sending data
items.

– The NUMVAL and NUMVAL-C intrinsic functions can take a national literal
or national data item as an argument.

Using these new national data capabilities, it is now practical to develop COBOL
programs that exclusively use Unicode for all application data.

v The REDEFINES clause has been enhanced such that for data items that are not
level 01, the subject of the entry can be larger than the data item being
redefined.

v A new compiler option, MDECK, causes the output from library-processing
statements to be written to a file .

v DB2 coprocessor support has been enhanced: XREF is improved.
v The literal in a VALUE clause for a data item of class national can be

alphanumeric .

These terminology changes were also made in this release:
v The term alphanumeric group is introduced to refer specifically to groups other

than national groups.
v The term group means both alphanumeric groups and national groups except

when used in a context that obviously refers to only an alphanumeric group or
only a national group.

Preface xxvii

v The term external decimal refers to both zoned decimal items and national
decimal items.

v The term alphanumeric floating point is introduced to refer to an external
floating-point item that has USAGE DISPLAY.

v The term external floating point refers to both alphanumeric floating-point items
and national floating-point items.

Changes in IBM Enterprise COBOL for z/OS, Version 3
Release 3

v XML support has been enhanced. A new statement, XML GENERATE, converts
the content of COBOL data records to XML format. XML GENERATE creates
XML documents encoded in Unicode UTF-16 or in one of several single-byte
EBCDIC code pages.

v There are new and improved features of the Debug Tool:
– Performance is improved when you use COBOL SYSDEBUG files.
– You can more easily debug programs that use national data: When you

display national data in a formatted dump or by using the Debug Tool LIST
command, the data is automatically converted to EBCDIC representation
using the code page specified in the CODEPAGE compiler option. You can
use the Debug Tool MOVE command to assign values to national data items,
and you can move national data items to or from group data items. You can
use national data as a comparand in Debug Tool conditional commands such
as IF or EVALUATE.

– You can debug mixed COBOL-Java applications, COBOL class definitions, and
COBOL programs that contain object-oriented syntax.

For further details about these enhancements to debugging support, see the
Debug Tool User's Guide.

v DB2 Version 8 SQL features are supported when you use the integrated DB2
coprocessor.

v The syntax for specifying options in the COBJVMINITOPTIONS environment
variable has changed.

Changes in IBM Enterprise COBOL for z/OS and OS/390,
Version 3 Release 2

v The compiler has been enhanced to support new features of Debug Tool:
– Playback support lets you record and replay application execution paths and

data values.
– Automonitor support displays the values of variables that are referenced in

the current statement during debugging.
– Programs that have been compiled with the OPTIMIZE and

TEST(NONE,SYM,. . .) options are supported for debugging.
– The Debug Tool GOTO command is enabled for programs that have been

compiled with the NOOPTIMIZE option and TEST option with any of its
suboptions. (In earlier releases, the GOTO command was not supported for
programs compiled with TEST(NONE, . . .).)

For further details about these enhancements to debugging support, see the
Debug Tool User's Guide.

v Extending Java interoperability to IMS : Object-oriented COBOL programs can
run in an IMS Java dependent region. The object-oriented COBOL and Java
languages can be mixed in a single application.

xxviii Enterprise COBOL for z/OS, V5.2 Migration Guide

v Enhanced support for Java interoperability:
– The OPTIMIZE compiler option is fully supported for programs that contain

OO syntax for Java interoperability.
– Object references of type jobjectArray are supported for interoperation

between COBOL and Java.
– OO applications that begin with a COBOL main factory method can be

invoked with the java command.
– A new environment variable, COBJVMINITOPTIONS, is provided for

initializing the Java virtual machine for OO applications that start with a
COBOL program.

– OO applications that begin with a COBOL program can, with some
limitations, be bound as modules in a PDSE and run using batch JCL.

v Unicode enhancement for working with DB2: The code pages for host variables
are handled implicitly when you use the DB2 integrated coprocessor. SQL
DECLARE statements are necessary only for variables described with USAGE
DISPLAY or USAGE DISPLAY-1 when COBOL and DB2 code pages do not
match.

Changes in IBM Enterprise COBOL for z/OS and OS/390,
Version 3 Release 1

v Multithreading support: toleration of POSIX threads and signals, permitting
applications with COBOL programs to run on multiple threads within a process

v Interoperation of COBOL and Java by means of object-oriented syntax,
permitting COBOL programs to instantiate Java classes, invoke methods on Java
objects, and define Java classes that can be instantiated in Java or COBOL and
whose methods can be invoked in Java or COBOL

v Ability to call services provided by the Java Native Interface (JNI) to obtain
additional Java capabilities, with a copybook JNI.cpy and special register
JNIENVPTR to facilitate access

v Basic support for Unicode provided by NATIONAL data type and national (N,
NX) literals, intrinsic functions DISPLAY-OF and NATIONAL-OF for character
conversions, and compiler options NSYMBOL and CODEPAGE
– Compiler option CODEPAGE to specify the code page used for encoding

national literals, and alphanumeric and DBCS data items and literals
– Compiler option NSYMBOL to control whether national or DBCS processing

should be in effect for literals and data items that use the N symbol
v Basic XML support, including a high-speed XML parser that allows programs to

consume inbound XML messages, verify that they are well formed, and
transform their contents into COBOL data structures; with support for XML
documents encoded in Unicode UTF-16 or several single-byte EBCDIC code
pages

v Support for compilation of programs that contain CICS statements, without the
need for a separate translation step
– Compiler option CICS, enabling integrated CICS translation and specification

of CICS options
v VALUE clauses for BINARY data items that permit numeric literals to have a

value of magnitude up to the capacity of the native binary representation, rather
than being limited to the value implied by the number of 9s in the PICTURE
clause

Preface xxix

v A 4-byte FUNCTION-POINTER data item that can contain the address of a
COBOL or non-COBOL entry point, providing easier interoperability with C
function pointers

v The following support is no longer provided (as documented in this Migration
Guide):
– SOM-based object-oriented syntax and services
– Compiler options CMPR2, ANALYZE, FLAGMIG, TYPECHK, and IDLGEN

v Changed default values for the following compiler options: DBCS, FLAG(I,I),
RENT, and XREF(FULL).

Changes in COBOL for OS/390 & VM, Version 2 Release 2
v Enhanced support for decimal data, raising the maximum number of decimal

digits from 18 to 31 and providing an extended-precision mode for arithmetic
calculations

v Enhanced production debugging using overlay hooks rather than compiled in
hooks, with symbolic debugging information optionally in a separate file

v Support for compiling, linking, and running in the OS/390 UNIX System
Services environment, with COBOL files able to reside in the hierarchical file
system (HFS)

v Toleration of fork(), exec(), and spawn(); and the ability to call UNIX/POSIX
functions

v Enhanced input-output function, permitting dynamic file allocation by means of
an environment variable named in SELECT. . . ASSIGN, and the accessing of
sequentially organized HFS files including by means of ACCEPT and DISPLAY

v Support for line-sequential file organization for accessing HFS files that contain
text data, with records delimited by the new-line character

v COMP-5 data type, new to host COBOL, allowing values of magnitude up to the
capacity of the native binary representation

v Significant performance improvement in processing binary data with the
TRUNC(BIN) compiler option

v Support for linking of COBOL applications using the OS/390 DFSMS binder
alone, with the prelinker required only in exceptional cases under CICS

v Diagnosis of moves (implicit or explicit) that result in numeric truncation
enabled through compiler option DIAGTRUNC

v System-determined block size for the listing data set available by specifying
BLKSIZE=0

v Limit on block size of QSAM tape files raised to 2 GB
v Support under CICS for DISPLAY to the system logical output device and

ACCEPT for obtaining date and time
v Support for the DB2 coprocessor enabled through the SQL compiler option,

eliminating the need for a separate precompile step and permitting SQL
statements in nested programs and copybooks

v Support for the millennium language extensions now included in the base
COBOL product

Changes in COBOL for OS/390 & VM V2 R1 Modification 2
v New compiler option ANALYZE to check the syntax of embedded SQL and

CICS statements

xxx Enterprise COBOL for z/OS, V5.2 Migration Guide

v Extension of the ACCEPT statement to cover the recommendation in the
Working Draft for Proposed Revision of ISO 1989:1985 Programming Language
COBOL

v New intrinsic date functions to convert to dates with a four-digit year
v The millennium language extensions, enabling compiler-assisted date processing

for dates containing two-digit and four-digit years

Requires IBM VisualAge® Millennium Language Extensions for OS/390 & VM
(program number 5648-MLE) to be installed with your compiler.

Changes in COBOL for OS/390 & VM V2 R1 Modification 1
v Extensions to currency support for displaying financial data, including:

– Support for currency signs of more than one character
– Support for more than one type of currency sign in the same program
– Support for the euro currency sign, as defined by the Economic and Monetary

Union (EMU)

Changes in COBOL for OS/390 & VM, Version 2 Release 1
v Support has been added for dynamic link libraries (DLLs)
v Due to changes in the SOMobjects product that is delivered with OS/390 Release

3, changes in the JCL for building object-oriented COBOL applications were
required.

v The INTDATE compiler option is no longer an installation option only. It can
now be specified as an option when invoking the compiler.

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this information or any other Enterprise
COBOL documentation, contact us in one of these ways:
v Use the Online Readers' Comment Form at www.ibm.com/software/awdtools/

rcf/.
v Send your comments to the following address: compinfo@cn.ibm.com.

Be sure to include the name of the documentation, the publication number of the
documentation, the version of Enterprise COBOL, and, if applicable, the specific
location (for example, page number) of the text that you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

Accessibility
Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use software products successfully. The accessibility features in
z/OS provide accessibility for Enterprise COBOL.

The major accessibility features in z/OS are:
v Interfaces that are commonly used by screen readers and screen-magnifier

software
v Keyboard-only navigation

Preface xxxi

http://www.ibm.com/software/awdtools/rcf/
http://www.ibm.com/software/awdtools/rcf/

v Ability to customize display attributes such as color, contrast, and font size

Interface information
Assistive technology products work with the user interfaces that are found in
z/OS. For specific guidance information, see the documentation for the assistive
technology product that you use to access z/OS interfaces.

Keyboard navigation
Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/OS services using IBM Rational® Developer for System z®.

For information about accessing these interfaces, see the following publications:
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS ISPF User's Guide Volume I

v IBM Rational Developer for System z information centers

These guides describe how to use TSO/E and ISPF, including the use of keyboard
shortcuts or function keys (PF keys). Each guide includes the default settings for
the PF keys and explains how to modify their functions.

Accessibility of this information

The English-language XHTML format of this information that will be provided in
the IBM Knowledge Center at www.ibm.com/support/knowledgecenter/en/
SS6SG3_5.2.0/welcome.html is accessible to visually impaired individuals who use
a screen reader.

To enable your screen reader to accurately read syntax diagrams, source code
examples, and text that contains the period or comma PICTURE symbols, you
must set the screen reader to speak all punctuation.

IBM and accessibility
See the Human Ability and Accessibility Center at www.ibm.com/able for more
information about the commitment that IBM has to accessibility.

xxxii Enterprise COBOL for z/OS, V5.2 Migration Guide

http://www-01.ibm.com/software/sw-library/en_US/products/Z964267S85716U24/#Information%20centers
https://www.ibm.com/support/knowledgecenter/en/SS6SG3_5.2.0/welcome.html
http://www.ibm.com/able

Part 1. Overview

© Copyright IBM Corp. 1991, 2019 1

2 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 1. Introducing the new compiler and run time

This section provides an overview of the Enterprise COBOL compiler (IBM
Enterprise COBOL for z/OS), and the common run time (Language Environment)
and introduces you to the terminology used throughout this information.

Enterprise COBOL Version 5 executables are Program Objects and can reside only
in PDSE data sets. If your COBOL load libraries are in PDS data sets, migrate them
to PDSE data sets.

This manual assumes that you have completed your runtime migration to
Language Environment. What does this mean? Briefly these are the conditions to
be met before a COBOL runtime migration is complete:
v The Language Environment data set SCEERUN is installed in LNKLST or

LPALST.
v There are no instances of COBLIB, VSCLLIB, or COB2LIB in LNKLST or

LPALST.
v There are no instances of COBLIB, VSCLLIB, or COB2LIB in JCL STEPLIB or

JOBLIB statements or in CICS startup JCL.
v All statically bound runtime library routines for programs that are compiled

with NORES have been REPLACEd with routines from Language Environment.
v IGZEBST bootstrap modules for VS COBOL II programs that are compiled with

RES were either linked with the VS COBOL II runtime version of IGZEBST that
has APAR PN74000 applied, or IGZEBST was REPLACEd with IGZEBST from
Language Environment.

If you understand these conditions, but your shop has not completed its runtime
library migration, you must complete that migration before using this book. You
can use the Enterprise COBOL V4.2 Compiler and Runtime Migration Guide at
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf for help in completing
your migration to Language Environment.

Using Language Environment with Enterprise COBOL V5 and VS
COBOL II programs

When running a mixture of VS COBOL II programs and Enterprise COBOL V5
programs:
v A current version of IGZEBST is required:

– For statically CALLed programs in CICS, you will need to replace IGZEBST
in applications with VS COBOL II programs with the IGZEBST from LE with
the PTFs for APAR PI33330 installed.

Note: IGZEBST from LE with the PTFs for APAR PI33330 installed can also
be used with any COBOL programs VS COBOL II and later without COBOL
V5 or V6 programs.

– For dynamically CALLed CICS programs, you just need to install the PTFs
for APAR PI25079 on SCEERUN.

Note: For statically CALLed programs in non-CICS, performance will be
better if you replace IGZEBST in applications with VS COBOL II programs
with the IGZEBST from LE with the PTFs for APAR PI33330 installed. It is

© Copyright IBM Corp. 1991, 2019 3

|
|

|
|

|

|
|
|

|
|
|

|
|

|
|
|

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

not required. There is no issue with IGZEBST for dynamically called
programs in non-CICS for calling VS COBOL II programs from COBOL V5 or
V6 programs.

v A current version of CEEBETBL, the Language Environment externals table, is
required. If you are including object code bound some time ago with your new
COBOL V5 object code, you might be indirectly including an old version of
CEEBETBL.
If the length of CEEBETBL you bind is less than x'28' (or the length of the
CEEBETBL in the current SCEELKED library), it is old and needs to be replaced,
or you will encounter runtime abends or a terminating runtime message.
If you rebind older object code with COBOL V5 as part of your migration, it is
recommended that you specifically INCLUDE a current copy of CEEBETBL prior
to INCLUDEs of the older object code, taking care that you do not inadvertently
make CEEBETBL the entry point.

If you understand these conditions, and meet them all, you can skip to Chapter 4,
“Planning to upgrade source programs,” on page 27.

If you do not understand these conditions, then please continue reading these
overview chapters. If you then discover that your shop has not completed its
runtime library migration, use the Enterprise COBOL V4.2 Compiler and Runtime
Migration Guide at http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf for help
in completing your runtime library migration.

This section provides an overview of the Enterprise COBOL compiler (IBM
Enterprise COBOL for z/OS), and the common run time (Language Environment)
and introduces you to the terminology used throughout this information. This
section includes the following information:
v Product relationships: compiler, run time, debug
v Comparison of COBOL compilers
v Language Environment's runtime support for different compilers
v Advantages of the new compiler and run time
v Suggestions for incremental migration
v Changes with the new compiler and run time
v General conversion tasks

Terminology clarification

In this information, we use the term Enterprise COBOL as a general reference to:
v IBM Enterprise COBOL for z/OS and OS/390, Version 3 Release 1
v IBM Enterprise COBOL for z/OS and OS/390, Version 3 Release 2
v IBM Enterprise COBOL for z/OS, Version 3 Release 3
v IBM Enterprise COBOL for z/OS, Version 3 Release 4
v IBM Enterprise COBOL for z/OS, Version 4 Release 1
v IBM Enterprise COBOL for z/OS, Version 4 Release 2
v IBM Enterprise COBOL for z/OS, Version 5 Release 1

In this information, we use the term IBM COBOL as a general reference to:
v COBOL/370 Version 1 Release 1
v COBOL for MVS & VM, Version 1 Release 2
v COBOL for OS/390 & VM, Version 2 Release 1

4 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|

|
|
|
|

|
|
|

|
|
|
|

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

v COBOL for OS/390 & VM, Version 2 Release 2

See “Summary of changes to the COBOL compilers” on page xvii for further
details.

Product relationships: compiler, runtime library, debug
IBM Enterprise COBOL for z/OS is IBM's strategic COBOL compiler for the zSeries
platform. Enterprise COBOL is comprised of features from IBM COBOL, VS
COBOL II, and OS/VS COBOL with additional features such as multithread
enablement, Unicode, XML capabilities, object-oriented COBOL syntax for Java
interoperability, integrated CICS translator, and integrated DB2 coprocessor.
Enterprise COBOL, as well as IBM COBOL and VS COBOL II, supports 85 COBOL
Standard. Some features such as the CMPR2 compiler option and SOM-based
object-oriented COBOL syntax that IBM COBOL supported are not available with
Enterprise COBOL.

Language Environment provides a single language runtime library for COBOL,
PL/I, C/C++, and FORTRAN. In addition to support for existing applications,
Language Environment also provides common condition handling, improved
interlanguage communication (ILC), reusable libraries, and more efficient
application development. Application development is simplified by the use of
common conventions, common runtime facilities, and a set of shared callable
services. Language Environment is required to run Enterprise COBOL programs.

Debugging capabilities are provided by Debug Tool. Debug Tool provides
significantly improved debugging function over previous COBOL debugging tools,
and can be used to debug Enterprise COBOL programs, IBM COBOL programs, VS
COBOL II programs running under Language Environment, and other programs
including assembler, PL/I, and C/C++.

With OS/VS COBOL and VS COBOL II, the runtime library was included with the
compiler. In addition, the debug component was also an optional part of a single
COBOL product. In Enterprise COBOL Version 3 Debug Tool was included with
the full-function version of the compiler.

With Enterprise COBOL Version 5, the compiler, the debugging component, and
the runtime library are all separate, although the runtime library (Language
Environment) is included with the z/OS operating system and does not need to be
purchased separately.

Comparison of COBOL compilers
Table 4 on page 6 gives an overview of the functions available with the latest
releases of OS/VS COBOL, VS COBOL II, COBOL for MVS & VM, COBOL for
OS/390 & VM, and shows the new functions available with the Enterprise COBOL
compiler.

Chapter 1. Introducing the new compiler and run time 5

Table 4. Comparison of COBOL compilers

OS/VS COBOL VS COBOL II
COBOL for MVS &
VM

COBOL for OS/390 &
VM

Enterprise COBOL
for z/OS

Support for:
Java interoperability
under IMS, OO
support for Java
interoperability, XML,
integrated CICS
translator,
multithreading,
Unicode

Support for:
DLLs
31 digits
DB2 coprocessor
OS/390 UNIX
Enhanced support for
Debug Tool

Support for:
DLLs 31 digits
DB2 coprocessor
OS/390 UNIX
Enhanced support
for Debug Tool

Extensions for:
Object-oriented
COBOL,
C interoperability,
Intrinsic functions,
Amendment to

'85 Std,
Support for:
Language
Environment
Debug Tool

Extensions for:
Object-oriented
COBOL,
C interoperability,
Intrinsic functions,
Amendment to
'85 Std,

Support for:
Language
Environment
Debug Tool

Extensions for:
C interoperability,
Intrinsic functions,
Amendment to

'85 Std,
Support for:
Language
Environment
Debug Tool

85 COBOL Standard,
No intrinsic
functions, Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, Interactive
debugging
(full-screen mode)

85 COBOL Standard,
Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, Interactive
debugging (full-screen
mode)

85 COBOL Standard,
Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, Interactive
debugging (full-screen
mode)

85 COBOL Standard,
Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, Interactive
debugging
(full-screen mode)

74 COBOL
Standard, 74 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive
debugging (line
mode)

COBOL 74
compatibility, 85 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging

COBOL 74
compatibility, 85 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging

COBOL 74
compatibility, 85 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging

85 STD FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging

For a complete list of host versions and releases, see the Licensed Program
Specifications for Language Environment and for the compiler that you are using.

6 Enterprise COBOL for z/OS, V5.2 Migration Guide

Language Environment's runtime support for different compilers
The OS/VS COBOL runtime library provided support for only OS/VS COBOL
programs. Assembler programs could be included, but not VS COBOL II programs.

The VS COBOL II runtime library provided support for both OS/VS COBOL and
VS COBOL II programs. Assembler programs could also be included.

Language Environment provides support for OS/VS COBOL programs, and VS
COBOL II programs, as well as IBM COBOL and Enterprise COBOL programs. In
addition, Language Environment provides support for other high-level languages,
including PL/I, C/C++ and Fortran. Like its predecessors, assembler programs can
be included in applications that run under Language Environment

Different versions of Enterprise COBOL have different minimum release level
requirements for Language Environment. For example, Enterprise COBOL for
z/OS, Version 4.2 required a minimum level of z/OS Version 1 Release 9 and
Enterprise COBOL for z/OS, Version 5.1 requires a minimum level of z/OS Version
1 Release 13.

Advantages of the new compiler and run time
The Enterprise COBOL compiler and Language Environment run time provide
additional functions over OS/VS COBOL, VS COBOL II, and IBM COBOL. Table 5
lists the advantages of the new compiler and run time and indicates whether they
apply to VS COBOL II, OS/VS COBOL, IBM COBOL, or all three.

Table 5. Advantages of Enterprise COBOL and Language Environment

Advantage Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

XML support Enterprise COBOL provides new statements for
parsing and generating XML documents. These
statements allow programs to transform XML
content into COBOL data structures and COBOL
data structures into XML documents.

X X X

Java interoperation Enterprise COBOL includes object-oriented COBOL
syntax that enables COBOL to interoperate with
Java. This Java interoperation is also supported
under IMS.

X X X

Support to run in
multiple threads

Enterprise COBOL has a toleration level of support
for POSIX threads and signals. With Enterprise
COBOL, an application can contain COBOL
programs running on multiple threads within a
process.

X X X

Support for Unicode The COBOL Unicode support uses the product z/OS
Support for Unicode.

X X X

Improved DB2 function Enterprise COBOL includes support for DB2 stored
procedures.

X X

Support for the DB2 coprocessor X X *

Chapter 1. Introducing the new compiler and run time 7

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

Improved CICS
function

Enterprise COBOL includes CALL statement support
(for faster CICS performance than when using EXEC
CICS LINK) and eliminates the need for user-coded
BLL cells. .

X

Increased WORKING-STORAGE space for DATA(24)
and DATA(31) programs. For DATA(31), the limit is
2GB. For DATA(24), the limit is the available space
below the 16-MB line.

X X X

Support for the Integrated CICS translator X X *

Usability enhancements These enhancements include:

v Large literals in VALUE clauses on COMP-5 items
or BINARY items with TRUNC(BIN)

v Function-pointer data type

v Arguments specifying ADDRESS OF

X X X

COBOL language
improvements

Ability to perform math and financial functions in
COBOL, using Intrinsic Functions. You can replace
current routines written in FORTRAN or C with
native COBOL code, thus simplifying your
application logic.

X X

Above-the-line support Virtual Storage Constraint Relief (VSCR) allows your
programs to reside, compile, and access programs
below or above the 16-MB line.

X

QSAM buffers can be above the 16-MB line for
optimal support of DFSMS and data striping.

X X

COBOL EXTERNAL data can now be above the line. N/A X

31-digit support Enterprise COBOL added support for numbers up to
31 digits when the ARITH(EXTEND) option is used.

X X *

z/OS UNIX system
services support

The cob2 command can be used to compile and link
COBOL programs in the z/OS UNIX shell. COBOL
programs can call most of the C language functions
defined in the POSIX standard.

X X

Error recovery options Programmers now have the ability to have
application-specific error-handling routines intercept
program interrupts, abends, and other
software-generated conditions for error recovery.
This is done using Enterprise COBOL programs with
Language Environment callable services to register
the user-written condition handlers. Language
Environment handles all condition management.

X X

High-precision math
routines

Using Language Environment callable services, your
programs can return the most accurate results.

X X

Support for multiple
MVS tasks

RES applications can now execute independently
under multiple MVS tasks. (For example, running
two Enterprise COBOL programs at the same time
from ISPF split screens.)

X X

8 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

Performance Faster arithmetic computations X

Faster dynamic and static CALL statements X

Improved performance of variable-length MOVEs X

Faster CICS performance if using the Language
Environment CBLPSHPOP runtime option to
prevent PUSH HANDLE and POP HANDLE for
CALL statements.

X

Improved performance for programs compiled with
TRUNC(BIN). COBOL for OS/390 & VM Release 2
added support to generate more efficient code when
the TRUNC(BIN) compiler option is used.

N/A X

Improved ILC With the common Language Environment library,
ILC is improved between COBOL and other
Language Environment-conforming languages. For
example, interlanguage calls between COBOL and
other languages are faster under Language
Environment, because there is significantly less
overhead for each CALL statement. Additionally,
under CICS, you can use the CALL statement to call
PL/I or C programs in place of EXEC CICS LINK.

X X

Character manipulation Improved bit and character manipulation using hex
literals. Improved flexibility with character
manipulation using reference modification

X

Top-down modular
program development

Support for top-down modular program
development through nesting of programs and
improved CALL and COPY functions

X

Structured
Programming Support

Support for structured programming coding
through:

v Inline PERFORM statements

v The CONTINUE place-holder statement

v The EVALUATE statement

v Explicit scope terminators (for example: END-IF,
END-PERFORM, END-READ)

X

85 COBOL Standard
conformance

Support for 85 COBOL Standard X

Support for Amendment 1 (Intrinsic Functions
Module) of 85 COBOL Standard

X X

Subsystem support Improved support for IMS, ISPF, DFSORT, DB2,
WAS

X

Support for reentrancy All OS/VS COBOL programs are nonreentrant. Only
reentrant programs can be loaded into shared
storage (LPA or Shared Segments).

X

Chapter 1. Introducing the new compiler and run time 9

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

Support for Debug Tool Debug Tool provides the following benefits:

v Interactive debugging of CICS and non-CICS
applications

v Interactive debugging of batch applications

v Full-screen debugging for CICS and non-CICS
applications

v Debugging of mixed languages in the same debug
session

v Ability to debug programs that run on the host

v Working in conjunction with Rational Developer
for System z, the ability to debug host programs
from the workstation using a graphical user
interface

X X

For COBOL for OS/390 & VM and later programs
only:

v Dynamic Debug feature which allows COBOL
programs compiled without hooks to be
debugged.

X X

For Enterprise COBOL Version 4 or later programs:

v Compiler TEST suboption EJPD enables
predictable GOTO/JUMPTO in programs also
compiled with a non-zero OPTIMIZE level.
Note: Unpredictable GOTO/JUMPTO in
programs compiled with a non-zero OPTIMIZE
level and TEST(NOJEPD) is available with the
Debug Tool SET WARNING OFF command.

X X X

Runtime options ABTERMENC and TERMTHDACT- allow you to
control error behavior.

X X

CBLQDA - allows you to control dynamic allocation
of QSAM files.

X

LANGUAGE - allows you to change language of
runtime error messages.

X

RPTSTG - allows you to obtain storage usage
reports.

X

Storage options - allow you to control where storage
is obtained and the amount of storage used.

X X

10 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

Compiler options for
Enterprise COBOL
Version 5

There have been many changes to compiler options
and suboptions for Enterprise COBOL Version 5. For
details about those changes, see “Compiler option
changes in Enterprise COBOL Version 5” on page
174. The following compiler options are available to
Enterprise COBOL Version 5 programs:

v AFP(VOLATILE|NOVOLATILE)

v ARCH(n)

v COPYRIGHT | NOCOPYRIGHT

v DISPSIGN(SEP|COMPAT)

v HGPR(PRESERVE|NOPRESERVE)

v INITCHECK | NOINITCHECK

v MAXPCF(n)

v NUMCHECK | NONUMCHECK

v QUALIFY(COMPAT|EXTEND)

v SERVICE | NOSERVICE

v SQLIMS | NOSQLIMS

v SSRANGE(ZLEN|NOZLEN)

v STGOPT | NOSTGOPT

v VLR(COMPAT|STANDARD)

v VSAMOPENFS(COMPAT|SUCC)

v XMLPARSE(XMLSS|COMPAT)

v NOZONECHECK|ZONECHECK(MSG)|ZONECHECK(ABD)

v ZONEDATA(PFD|MIG|NOPFD)
Notes:

– The COPYRIGHT, QUALIFY, and SERVICE options
are only available in Enterprise COBOL V5.2.

– The VLR option is available in Enterprise
COBOL V5.1 with the service PTFs and V5.2.

– The VSAMOPENFS option is available in Enterprise
COBOL V5.2 with the service PTFs.

– The XMLPARSE option was originally removed in
Enterprise COBOL V5.1, but was restored to
V5.1 via service and is included in V5.2.

– The INITCHECK, NUMCHECK and SSRANGE(MSG|ABD)
options are available in Enterprise COBOL V5.2
with the service PTFs.

– The ZONECHECK option was originally available
in Enterprise COBOL V5.1 with the service
PTFs and V5.2 with the service PTFs, but was
deprecated in V5.2 with the PTF for APAR
PI81006 installed, and is replaced by NUMCHECK.

– The ZONEDATA options is available in Enterprise
COBOL V5.1 with the service PTFs and V5.2
with the service PTFs.

X X X

Chapter 1. Introducing the new compiler and run time 11

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

Compiler options for
Enterprise COBOL
Version 4

The following compiler options are available to
Enterprise COBOL Version 4 programs and later
programs only:

v XMLPARSE - controls whether the z/OS XML
System Services parser or the existing COBOL
parser is used for XML PARSE statements. With
the XMLPARSE(COMPAT) option, XML parsing is
compatible with Enterprise COBOL Version 3.
With the XMLPARSE(XMLSS) options, the z/OS
System Services parser is used and new XML
parsing capabilities are enabled.
Note: The XMLPARSE option was originally
removed in Enterprise COBOL V5.1, but was
restored to V5.1 via service and is included in
V5.2.

v OPTFILE - controls whether compiler options are
read from a data set specified in a SYSOPTF DD
statement.

v SQLCCSID - controls coordination of the coded
character set ID (CCSID) between COBOL and
DB2.

v BLOCK0 - activates an implicit BLOCK
CONTAINS 0 clause for all eligible QSAM files in
a program.

v MSGEXIT - The MSGEXIT suboption of the EXIT
compiler option provides a facility for customizing
compiler messages (changing their severity or
suppressing them), including FIPS (FLAGSTD)
messages.

X X X

12 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

Compiler options for
Enterprise COBOL
Version 3

The following compiler options are available to
Enterprise COBOL Version 3 and later programs
only:

v CICS - enables the integrated CICS translator
capability and specifies CICS options. NOCICS is
the default.

v CODEPAGE - specifies the code page used for
encoding contents of alphanumeric and DBCS
data items at run time as well as alphanumeric,
national, and DBCS literals in a COBOL source
program.

v MDECK(COMPILE, NOCOMPILE) - controls
whether output from library processing is written
to a file and whether compilation continues
normally after library processing and the
generation of the output file.

v NSYMBOL(NATIONAL, DBCS) - controls the
interpretation of the "N" symbol used in literals
and picture clauses, indicating whether national or
DBCS processing is assumed.

v THREAD - indicates that the COBOL program is
to be enabled for execution in a Language
Environment enclave with multiple POSIX threads
or PL/I tasks. The default is NOTHREAD.

X X X

Compiler options for
COBOL for OS/390 &
VM

The following compiler options are available to
COBOL for OS/390 & VM and later programs only:

v DLL - enables the compiler to generate an object
module that is enabled for Dynamic Link Library
(DLL) support.

v EXPORTALL - instructs the compiler to
automatically export certain symbols when the
object deck is link-edited to form a DLL.

X X

Compiler options for
COBOL for MVS & VM

The following compiler options are available to
COBOL for MVS & VM and later programs:

v CURRENCY - allows you to define a default
currency symbol for COBOL programs.

v OPTIMIZE(FULL) - OPTIMIZE with the new
suboption of FULL optimizes object programs and
provides improved runtime performance over
both the OS/VS COBOL and VS COBOL II
OPTIMIZE options. The compiler discards unused
data items and does not generate code for any
VALUE clauses for the discarded data items.

v
PGMNAME(COMPAT,LONGUPPER,LONGMIXED)
controls the handling of program names in relation
to length and case.

v RMODE(AUTO,24,ANY) - allows NORENT
programs to reside above the 16-MB line.

X X

* The integrated DB2 coprocessor, integrated CICS translator, and 31-digit support were added as new features to
COBOL for OS/390 & VM, Version 2 Release 2.

Chapter 1. Introducing the new compiler and run time 13

Changes with the new compiler and run time
With Enterprise COBOL, you may find that recompiling existing COBOL
applications is affected by several areas such as the removal of compiler options,
different default compiler options, unsupported SOM-based OO COBOL, and an
integrated DB2 coprocessor, and an integrated CICS translator. The following
information is a brief description of the removed or improved element and the
actions required to ensure compatibility.

CMPR2 compiler option not available
Enterprise COBOL does not provide the CMPR2 compiler option. Existing
programs compiled with CMPR2 must be converted to NOCMPR2 (85 COBOL
Standard) in order to compile them with Enterprise COBOL.

For additional details, see:
v Chapter 5, “Upgrading OS/VS COBOL source programs,” on page 45
v Chapter 7, “Upgrading VS COBOL II source programs,” on page 91
v Chapter 9, “Upgrading IBM COBOL source programs,” on page 101

FLAGMIG compiler option
Enterprise COBOL V5 does not provide the FLAGMIG compiler option.

To aid you with migration to Enterprise COBOL V5, there is a new option in
Enterprise COBOL V4.2, FLAGMIG4, to flag source code syntax-related changes
required to move to Enterprise COBOL V5.

For additional details about the FLAGMIG option, see:
v Chapter 5, “Upgrading OS/VS COBOL source programs,” on page 45
v Chapter 7, “Upgrading VS COBOL II source programs,” on page 91
v Chapter 9, “Upgrading IBM COBOL source programs,” on page 101

SOM-based object-oriented COBOL not available
Enterprise COBOL does not support SOM-based OO COBOL; however, Enterprise
COBOL provides OO syntax to facilitate the interoperation of COBOL and Java
programs. The removal of SOM-based OO COBOL from Enterprise COBOL
included the removal of the compiler options TYPECHK and IDLGEN because
they require SOM to run. Applications utilizing SOM-based OO COBOL must be
redesigned to upgrade to Java-based OO COBOL syntax or redesigned as
procedural (non-OO) COBOL.

For additional details and compatibility considerations, see “Upgrading
SOM-based object-oriented (OO) COBOL programs” on page 140.

Integrated DB2 coprocessor available
Enterprise COBOL provides an integrated DB2 coprocessor that allows the
Enterprise COBOL compiler to handle both native COBOL statements and
embedded SQL statements in a source program. You can choose to migrate from
the separate DB2 precompiler to the integrated DB2 coprocessor, or you can choose
to continue using the separate DB2 precompiler.

14 Enterprise COBOL for z/OS, V5.2 Migration Guide

The SQL compiler option must be specified to enable the DB2 coprocessor to
process a COBOL source program that contains SQL statements.

For additional details and compatibility considerations, see:
v Chapter 19, “DB2 coprocessor conversion considerations,” on page 215

Integrated CICS translator available
Enterprise COBOL provides an integrated CICS translator that allows the
Enterprise COBOL compiler to handle both native COBOL statements and
embedded CICS statements in a source program. You can choose to migrate from
the separate CICS translator to the integrated CICS translator, or to continue using
the separate CICS translator.

The CICS compiler option must be specified to enable the CICS translator to
process a COBOL source program that contains CICS statements.

For additional details and compatibility considerations, see:
v Chapter 18, “CICS conversion considerations for COBOL source,” on page 209

General migration tasks
Depending on your shop's programming environment, you will likely have to
complete one or more migration tasks to move to the new compiler and run time.

These tasks include:
v Planning your strategy
v Upgrading your source to Enterprise COBOL
v Adding Enterprise COBOL programs to existing applications

Planning your strategy
Before upgrading your source programs to Enterprise COBOL, develop a
conversion strategy. For help in completing your runtime library migration to
Language Environment, see the Enterprise COBOL V4.2 Compiler and Runtime
Migration Guide at http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

Your migration strategy might be to gradually recompile entire existing
applications with Enterprise COBOL as needed. You may also decide to recompile
individual programs as you go.

Upgrading your source to Enterprise COBOL
The effort required to upgrade your source programs is dependent on the compiler
used and the language level used for those programs.

OS/VS COBOL
OS/VS COBOL programs compiled with either LANGLVL(1) or LANGLVL(2) can
contain either 68 COBOL Standard or 74 COBOL Standard elements. Conversion is
required in order for these programs to compile with Enterprise COBOL. You
should use conversion tools to aid in this conversion. For details, see “Converting
to 85 COBOL Standard” on page 52.

VS COBOL II
From a conversion standpoint, VS COBOL II and Enterprise COBOL Version 5
have the following language differences:

Chapter 1. Introducing the new compiler and run time 15

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

v Removal of CMPR2 support
v Behavior of some SEARCH ALL statements
v New reserved words
v Simplified TEST compiler option
v Removal of runtime support for SIMVRD
v Removal of support for the format 2 declarative syntax: USE...AFTER...LABEL

PROCEDURE..., and the syntax: GO TO MORE-LABELS.

A complete list of reserved words, including those reserved for object-oriented
COBOL is included in Appendix B, “COBOL reserved word comparison,” on page
233.

If upgrading from VS COBOL II Release 3, there are also three minor language
differences due to ANSI interpretation changes. Aside from these small differences,
you can compile with Enterprise COBOL without change and receive the same
results. For details, see Chapter 7, “Upgrading VS COBOL II source programs,” on
page 91.

VS COBOL II Release 2 programs are coded to the 74 COBOL Standard as are VS
COBOL II programs compiled with the CMPR2 compiler option. The CMPR2
compiler option is not supported by Enterprise COBOL, requiring source
conversion for all VS COBOL II Release 1 or 2 programs as well as any VS COBOL
II Release 3 or 4 programs that were compiled with CMPR2. Conversion tools can
help you upgrade your source programs to 85 COBOL Standard. Details of
language differences between CMPR2 and NOCMPR2 are included in “Migrating
from the CMPR2 compiler option to NOCMPR2” on page 107.

For details about the conversion tools available to upgrade source programs, see
Appendix C, “Conversion tools for source programs,” on page 249.

IBM COBOL
Many IBM COBOL programs will compile without change under Enterprise
COBOL.

The following programs, however, will need to be upgraded before compiling with
Enterprise COBOL:
v Programs compiled with the CMPR2 compiler option
v Programs that have SOM-based object-oriented COBOL syntax
v Programs that use words which are now reserved in Enterprise COBOL
v Programs that have undocumented IBM COBOL extensions
v Programs that contain the format 2 declarative syntax: USE...AFTER...LABEL

PROCEDURE..., and optionally the syntax: GO TO MORE-LABELS.

For details, see Chapter 9, “Upgrading IBM COBOL source programs,” on page
101.

Enterprise COBOL Version 3
Most Enterprise COBOL Version 3 programs will compile without change under
Enterprise COBOL Version 5.

The following programs, however, will need to be upgraded:
v Programs that use words which are now reserved in Enterprise COBOL

16 Enterprise COBOL for z/OS, V5.2 Migration Guide

v Programs that contain the format 2 declarative syntax: USE...AFTER...LABEL
PROCEDURE..., and the syntax: GO TO MORE-LABELS.

v Programs that contain XML PARSE statements.

For details, see Chapter 11, “Upgrading programs from Enterprise COBOL Version
3,” on page 147.

Enterprise COBOL Version 4
Most Enterprise COBOL Version 4 programs will compile without change under
Enterprise COBOL Version 5.

The following programs, however, will need to be upgraded:
v Programs that use words which are now reserved in Enterprise COBOL
v Programs that contain the format 2 declarative syntax: USE...AFTER...LABEL

PROCEDURE..., and the syntax: GO TO MORE-LABELS.
v Programs that contain XML PARSE statements and were compiled with the

XMLPARSE(COMPAT) compiler option.

For details, see Chapter 13, “Upgrading from Enterprise COBOL Version 4,” on
page 161.

Adding Enterprise COBOL programs to existing applications
You can create new Enterprise COBOL programs (or recompile existing programs
with Enterprise COBOL) and run them with existing applications under Language
Environment.

Note: You should use this Migration Guide only if you have completed the
runtime migration to Language Environment. This means that the following
conditions have been met:
v The Language Environment data set SCEERUN is installed in LNKLST or

LPALST.
v There are no instances of COBLIB, VSCLLIB, or COB2LIB in LNKLST or

LPALST.
v There are no instances of COBLIB, VSCLLIB, or COB2LIB in JCL STEPLIB or

JOBLIB statements or in CICS startup JCL.
v All statically bound runtime library routines for programs that are compiled

with NORES have been REPLACEd with routines from Language Environment.
v IGZEBST bootstrap modules for VS COBOL II programs that are compiled with

RES were either linked with the VS COBOL II runtime version of IGZEBST that
has APAR PN74000 applied, or IGZEBST was REPLACEd with IGZEBST from
Language Environment.

If these steps have not been completed, please first complete all runtime migration
activities in the Enterprise COBOL V4.2 Compiler and Runtime Migration Guide at
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf prior to following the
steps here.

When running a mixture of VS COBOL II programs and Enterprise COBOL V5
programs:
v A current version of IGZEBST is required:

– For statically CALLed programs in CICS, you will need to replace IGZEBST
in applications with VS COBOL II programs with the IGZEBST from LE with
the PTFs for APAR PI33330 installed.

Chapter 1. Introducing the new compiler and run time 17

|
|

|

|
|
|

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

Note: IGZEBST from LE with the PTFs for APAR PI33330 installed can also
be used with any COBOL programs VS COBOL II and later without COBOL
V5 or V6 programs.

– For dynamically CALLed CICS programs, you just need to install the PTFs
for APAR PI25079 on SCEERUN.

Note: For statically CALLed programs in non-CICS, performance will be
better if you replace IGZEBST in applications with VS COBOL II programs
with the IGZEBST from LE with the PTFs for APAR PI33330 installed. It is
not required. There is no issue with IGZEBST for dynamically called
programs in non-CICS for calling VS COBOL II programs from COBOL V5 or
V6 programs.

v A current version of CEEBETBL, the Language Environment externals table, is
required. If you are including object code bound some time ago with your new
COBOL V5 object code, you might be indirectly including an old version of
CEEBETBL.
If the length of CEEBETBL you bind is less than x'28' (or the length of the
CEEBETBL in the current SCEELKED library), it is old and needs to be replaced,
or you will encounter runtime abends or a terminating runtime message.
If you rebind older object code with COBOL V5 as part of your migration, it is
recommended that you specifically INCLUDE a current copy of CEEBETBL prior
to INCLUDEs of the older object code, taking care that you do not inadvertently
make CEEBETBL the entry point.

When adding Enterprise COBOL programs to existing applications, you must be
aware of the following items:
v Restrictions of running programs with certain old COBOL programs
v Acquiring WORKING-STORAGE both above and below the 16-MB line
v Effect of compiler option changes
v Reserved word changes
v Other behavior differences with Enterprise COBOL V5

For details, see Chapter 16, “Adding Enterprise COBOL Version 5 programs to
existing COBOL applications,” on page 195.

Restriction: You cannot mix Enterprise COBOL Version 5 programs with:
v OS/VS COBOL programs. You must migrate them to Enterprise COBOL.
v VS COBOL II NORES programs. You must migrate them to Enterprise COBOL.

18 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

Chapter 2. Do I need to recompile?

Ideally, programs should be compiled with a supported compiler (currently only
IBM Enterprise COBOL for z/OS is supported) and run with a supported runtime
library (Language Environment). You can migrate programs gradually, in two
stages:
v Stage 1: Runtime migration. You can use the Enterprise COBOL V4.2 Compiler and

Runtime Migration Guide at http://publibfp.dhe.ibm.com/epubs/pdf/
igy3mg50.pdf for help in completing your runtime library migration.

v Stage 2: Compiler migration (you may compile only one or many programs in
existing applications)

The remainder of this section explains when and why you might want to migrate
your applications (run time or source). It includes the following topics:

Migration basics
The migration process involves compiler migration (recompiling source programs
with the new compiler) and might involve a runtime migration (moving your
applications to a new runtime library) as well. As part of the migration process,
you will also need to do inventory assessment and testing. As stated previously,
you are not required to do your recompilation and runtime migration concurrently.

For more details about the migration process, see “General migration tasks” on
page 15.

Runtime migration
Every COBOL program requires runtime library routines to execute. With the older
compilers OS/VS COBOL and VS COBOL II, there was an option to have the
runtime routines statically linked to the load modules (the NORES compiler
option) or dynamically accessed at run time (the RES compiler option). Since
COBOL/370 V1 in 1991, all COBOL compilers default to the RES behavior.

Moving to Language Environment
If you are starting with load modules consisting of programs that are compiled
with the NORES option and link-edited with the OS/VS COBOL runtime library or
the VS COBOL II runtime library, then you will need to use REPLACE
linkage-editor control statements to replace the existing runtime library routines
with the Language Environment versions. If you start with object programs
(non-linked), then you just need to link-edit with Language Environment.

Note: If your IGZEBST bootstrap routine from VS COBOL II has PN74000
installed, you do not need to REPLACE this IGZEBST with the Language
Environment version of IGZEBST.

If the programs are compiled with the RES option, make the Language
Environment library routines available at run time in place of the OS/VS COBOL
or VS COBOL II library routines by using LNKLST, LPALST, JOBLIB, or STEPLIB.

Do not make more than one COBOL runtime library available to your applications
at run time. For example, there should be one and only one COBOL runtime
library, such as SCEERUN for Language Environment, in LNKLST. If you have

© Copyright IBM Corp. 1991, 2019 19

|
|
|
|
|

|
|
|
|
|

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

more than one, you will either get hard-to-find errors or you will have an unused
load library in your concatenation. In addition, if you have more than one runtime
library in your concatenation, then you have an invalid configuration that is not
supported by IBM.

If you have not yet completed your runtime library migration, you must complete
that migration before using this book. You can use the Enterprise COBOL V4.2
Compiler and Runtime Migration Guide at http://publibfp.dhe.ibm.com/epubs/pdf/
igy3mg50.pdf for help in completing your runtime library migration.

Compiler migration
Compiler migration is not required for most programs and can occur after you
have moved your OS/VS COBOL or VS COBOL II programs to run with Language
Environment. Compiler migration is required for OS/VS COBOL programs and VS
COBOL II programs compiled with NORES.

Source code changes are not required for most programs when recompiling with
Enterprise COBOL Version 5. Although we recommend recompiling all programs
in each application as you migrate to Enterprise COBOL Version 5, it is not
required. Source code changes will be required for programs that were compiled
with OS/VS COBOL or were compiled with a later compiler using the old CMPR2
compiler option.

Compiler migration and recompilation is required for OS/VS COBOL programs
and VS COBOL II NORES programs if they are to be called by (or need to call)
Enterprise COBOL Version 5 programs. Enterprise COBOL V5 programs can
dynamically call (and be dynamically called by) VS COBOL II RES programs.

Compiler migration usually consists of upgrading the source language level that is
used (such as from 74 Standard COBOL supported by OS/VS COBOL to 85
Standard COBOL supported by Enterprise COBOL). Compiler migration is also
required in a few instances to enable your applications to run under Language
Environment.

Many conversion tools exist to aid in upgrading your source code. For details, see
Appendix C, “Conversion tools for source programs,” on page 249.

Service support for OS/VS COBOL and VS COBOL II programs
In some cases IBM will continue to provide support for OS/VS COBOL and VS
COBOL II programs that run under Language Environment.

IBM will continue to provide service support for the running of programs
compiled with the OS/VS COBOL Release 2 and VS COBOL II Release 3 and
higher compilers when these programs use the Language Environment runtime
library versions of the COBOL library routines with the following exceptions:
v OS/VS COBOL programs running under CICS Transaction Server
v OS/VS COBOL programs interoperating with Enterprise COBOL V5 programs
v VS COBOL II programs compiled with the NORES option interoperating with

Enterprise COBOL V5 programs

For example, the library routines for OS/VS COBOL programs exist in the OS/VS
COBOL, the VS COBOL II, and the Language Environment runtime libraries.
OS/VS COBOL programs running with the OS/VS COBOL runtime library or the
VS COBOL II runtime library are not supported by IBM Service. If your OS/VS

20 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

COBOL programs are running using a supported release of the Language
Environment runtime library, your programs are supported by IBM Service but
they cannot interoperate with Enterprise COBOL V5 programs. .

In CICS TS (Transaction Server), you can no longer run OS/VS COBOL programs.

Changing OS/VS COBOL programs
Although the OS/VS COBOL compiler is no longer supported, the programs that
were generated by it are supported if they are running under Language
Environment and not interoperating with Enterprise COBOL V5 programs. Once
you have migrated your runtime library to Language Environment, you can run
your source code through a source conversion tool, such as the COBOL and CICS
Conversion Aid (CCCA) and then compile using the Enterprise COBOL compiler.

For more information about CCCA, see Appendix C, “Conversion tools for source
programs,” on page 249.

Interoperability with older levels of IBM COBOL programs
There are some restrictions for Enterprise COBOL V5 programs to call or be called
by (interoperate) with programs compiled with earlier versions of COBOL.

Enterprise COBOL V5 programs cannot interoperate with OS/VS COBOL or VS
COBOL II NORES programs in a single application. A COBOL run unit (Language
Environment enclave) that contains an Enterprise COBOL V5 compiled program
must not contain any OS/VS COBOL or VS COBOL II NORES programs.

Note: Run units that contain only COBOL programs compiled with Enterprise
COBOL V4 or earlier versions can interoperate with OS/VS COBOL and VS
COBOL II NORES programs.

Programs compiled with Enterprise COBOL V5 can interoperate with programs
compiled with VS COBOL II or later, based on the following conditions and CALL
types:
v Static calls. Enterprise COBOL V5 compiled programs can be bound (link-edited)

with the following object modules or programs to form a single program object.
The programs within the program object can specify static calls to and from each
other.
– Programs that are compiled with VS COBOL II with the RES compiler option
– Programs that are compiled with any IBM COBOL compiler versions

subsequent to VS COBOL II
– Programs that are compiled with Enterprise COBOL V3 or V4

Note: Programs that are compiled with VS COBOL II with the NORES compiler
option specified cannot interoperate with programs compiled with Enterprise
COBOL V5.

v Dynamic calls. Program modules that contain programs compiled with VS
COBOL II with the RES option, or subsequent versions of COBOL can also
interoperate with Enterprise COBOL V5 program objects by using dynamic
CALL statements.

v DLL calls. Program modules that are compiled with earlier versions of COBOL
that supported DLL linkage can interoperate with Enterprise COBOL V5
program objects by using DLL linkage.

Chapter 2. Do I need to recompile? 21

22 Enterprise COBOL for z/OS, V5.2 Migration Guide

Part 2. Migration strategies

© Copyright IBM Corp. 1991, 2019 23

24 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 3. Compiler upgrade checklist

To upgrade your programs to Enterprise COBOL, use the following checklist.

Do these tasks:
1. If your COBOL load libraries are in PDS data sets, migrate them to PDSE data

sets.
2. Complete runtime migration, which means:
v The Language Environment data set SCEERUN is installed in LNKLST or

LPALST.
v There are no instances of COBLIB, VSCLLIB, or COB2LIB in LNKLST or

LPALST.
v There are no instances of COBLIB, VSCLLIB, or COB2LIB in JCL STEPLIB

or JOBLIB statements or in CICS startup JCL.
v All statically bound runtime library routines for programs that are compiled

with NORES have been REPLACEd with routines from Language
Environment.

v IGZEBST bootstrap modules for VS COBOL II programs that are compiled
with RES were either linked with the VS COBOL II runtime version of
IGZEBST that has APAR PN74000 applied, or IGZEBST was REPLACEd
with IGZEBST from Language Environment.

When running a mixture of VS COBOL II programs and Enterprise COBOL
V5 programs:
v A current version of IGZEBST is required:

– For statically CALLed programs in CICS, you will need to replace
IGZEBST in applications with VS COBOL II programs with the IGZEBST
from LE with the PTFs for APAR PI33330 installed.

Note: IGZEBST from LE with the PTFs for APAR PI33330 installed can
also be used with any COBOL programs VS COBOL II and later without
COBOL V5 or V6 programs.

– For dynamically CALLed CICS programs, you just need to install the
PTFs for APAR PI25079 on SCEERUN.

Note: For statically CALLed programs in non-CICS, performance will be
better if you replace IGZEBST in applications with VS COBOL II
programs with the IGZEBST from LE with the PTFs for APAR PI33330
installed. It is not required. There is no issue with IGZEBST for
dynamically called programs in non-CICS for calling VS COBOL II
programs from COBOL V5 or V6 programs.

v A current version of CEEBETBL, the Language Environment externals table,
is required. If you are including object code bound some time ago with
your new COBOL V5 object code, you might be indirectly including an old
version of CEEBETBL.
If the length of CEEBETBL you bind is less than x'28' (or the length of the
CEEBETBL in the current SCEELKED library), it is old and needs to be
replaced, or you will encounter runtime abends or a terminating runtime
message.

© Copyright IBM Corp. 1991, 2019 25

|
|

|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

If you rebind older object code with COBOL V5 as part of your migration,
it is recommended that you specifically INCLUDE a current copy of
CEEBETBL prior to INCLUDEs of the older object code, taking care that
you do not inadvertently make CEEBETBL the entry point.

3. Ensure that all software and hardware prerequisites as defined in the Licensed
Program Specifications Enterprise COBOL are satisfied. (Get the Licensed
Program Specifications from the Enterprise COBOL for z/OS library at
http://www.ibm.com/support/docview.wss?uid=swg27036733.)

4. Install prerequisite PTFs for the Language Environment runtime library on all
systems where COBOL programs might be compiled or run, including on all
production systems.

5. Ensure that all systems on which COBOL will run, and all software that needs
to work with COBOL (for example z/OS, Debug Tool, Fault Analyzer, and
DB2), are ready for programs compiled with the new COBOL compiler. For a
list of APARs, see “Prerequisite software and service for Enterprise COBOL
Version 5” on page 171

6. Save the old COBOL compiler for emergency use.
7. Purchase and install the new Enterprise COBOL compiler.
8. Set up the default compiler options and your library control system options

for the new compiler to be compatible with the old compiler. For future reuse,
document any customization or set up that you do.

9. Depending on which COBOL compiler you are migrating from, you might
need to make COBOL source-code changes. For details, see the topic in the
Upgrading programs section of this information which applies to your current
compiler.

10. The recommended migration strategy for Enterprise COBOL V5 is to compile
each application (group of programs) with COBOL V5 using INITCHECK,
NUMCHECK, and SSRANGE, and regression test the application alongside
the same application in its current form (that is, compiled with Enterprise
COBOL V4 or earlier compilers). If you do not get any INITCHECK,
NUMCHECK, or SSRANGE errors, and you are sure that you get the same
results with the new compiler as with the earlier compilers, recompile with
NOINITCHECK, NONUMCHECK, and NOSSRANGE, and move the
application into production. The reason for compiling with INITCHECK,
NUMCHECK, and SSRANGE is that some customers have found that they
have invalid COBOL data that gets different results with COBOL V5.
If, after a while, you have not found any INITCHECK, NUMCHECK, or
SSRANGE errors, then you might consider skipping this step for future
migrations. You might not have any invalid data usage. In addition, this step
is only recommended for the first time that a program is compiled with V5.
Once you have compiled with V5, you do not have to worry about migration
problems for that program.

11. After all programs have been compiled with the new compiler, uninstall the
old compiler. That way, you save license fees!

26 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

http://www-01.ibm.com/support/docview.wss?uid=swg27036733

Chapter 4. Planning to upgrade source programs

You can follow a general strategy for upgrading source programs to Enterprise
COBOL.

The following tasks are necessary, and should be performed in roughly the
following order:
1. Preparing to upgrade your source
2. Taking an inventory of your applications
3. Prioritizing your applications
4. Setting up a conversion procedure
5. Making application program updates

Because of the loss of service support for older COBOL compilers, you should
eventually upgrade all of your COBOL source programs. Although this is not an
immediate requirement, at some future date the older compilers and any
supported fixes will not be available. At that point, you will be forced to do a
'quick' migration, and this might be at a very inconvenient time.

Preparing to upgrade your source
In preparing to upgrade your source to Enterprise COBOL, you need to perform
the following tasks, which can be done concurrently:
v Installing Enterprise COBOL
v Assessing storage requirements
v Deciding which conversion tools to use
v Educating your programmers on new compiler features

Installing Enterprise COBOL
If you haven't already done so, install the compiler; see the Program Directory for
Enterprise COBOL. Be sure to set your default compiler options in Enterprise
COBOL Version 5 to the same installation default settings that you used with
earlier compilers.

Assessing storage requirements
You can load most of the Enterprise COBOL compiler above the 16 MB line. In
addition, Enterprise COBOL object programs execute in 31-bit addressing mode
and can reside above the 16-MB line, which frees storage below the 16 MB line.
You can use the freed storage for programs or data that must reside below the
16-MB line.

During conversion, you will need DASD storage for your current COBOL
compilers as well as for the Enterprise COBOL compiler. When you have
completed conversion, and if you have upgraded all of your OS/VS COBOL, VS
COBOL II, or IBM COBOL programs to Enterprise COBOL, you will be able to free
the storage reserved for your current COBOL compiler.

© Copyright IBM Corp. 1991, 2019 27

|
|
|
|

The program object produced from the same source code when compiled with
Enterprise COBOL V5 will be larger than the load module produced when
compiled with all earlier versions of COBOL.

Deciding which conversion tools to use and install them
If you use the available conversion tools, you will find that upgrading can be a
very simple procedure. The following conversion tools can help in upgrading your
source programs to Enterprise COBOL programs:

COBOL Conversion Tool (CCCA)
The COBOL and CICS/VS Command Level Conversion Aid (CCCA)
automatically converts your old COBOL programs, either OS/VS COBOL, VS
COBOL II, or IBM COBOL with CMPR2, into 85 COBOL Standard code that
you can compile with Enterprise COBOL. It also provides you with reports of
the statements that were changed. CCCA is included with the IBM Debug Tool
product.

For more information about CCCA, see Appendix C, “Conversion tools for
source programs,” on page 249.

OS/VS COBOL MIGR compiler option
The MIGR option identifies source statements that need to be converted to
compile under Enterprise COBOL.

CMPR2, FLAGMIG, and NOCOMPILE compiler options

The COBOL CMPR2, FLAGMIG, and NOCOMPILE options identify source
statements that need to be converted to compile under Enterprise COBOL. The
CMPR2 and FLAGMIG options are not available in Enterprise COBOL, but
you can use your older compilers with these options to flag the statements that
need to be changed in order to compile with Enterprise COBOL.

Enterprise COBOL V4.2 FLAGMIG4 compiler option
A new compiler option, FLAGMIG4, is available with APAR PM93450 for
Enterprise COBOL V4.2 to help you migrate to Enterprise COBOL V5. The
FLAGMIG4 option identifies language elements in Enterprise COBOL V4
programs that are not supported, or that are supported differently in
Enterprise COBOL V5. The compiler generates a warning diagnostic message
for all such language elements.

Another conversion tool you might want to use is COBOL Report Writer
Precompiler. It enables you to either continue using Report Writer code or convert
your Report Writer code to non-Report Writer code. The Report Writer Precompiler
is product number 5798-DYR.

These conversion tools are fully described in Appendix C, “Conversion tools for
source programs,” on page 249.

If you plan to use CCCA or COBOL Report Writer Precompiler, install it at this
time. For installation instructions, see the documentation for the conversion tool(s)
you plan to use.

Educating your programmers on new compiler features
Early in the conversion effort, ensure that your application programmers are
familiar with the features of Enterprise COBOL and the relationship and
interdependencies between Enterprise COBOL, Language Environment, and Debug
Tool and any other application productivity tools your shop uses.

28 Enterprise COBOL for z/OS, V5.2 Migration Guide

In addition to source language differences between Standard COBOL 68, Standard
COBOL 74, and Standard COBOL 85, your programmers will need to be familiar
with Language Environment condition handling and Language Environment
callable services.

For information about Enterprise COBOL and Language Environment education
available through IBM, you can call 1-800-IBM-TEACH (1-800-426-8322). You can
also get information directly from Language Environment publications or technical
conferences such as SHARE, www.share.org.

After your programmers are familiar with Enterprise COBOL features, they can
assist you in taking the inventory of programs as described in “Taking an
inventory of your applications.”

Taking an inventory of your applications
In planning the upgrade to Enterprise COBOL, you need to take a comprehensive
inventory of applications in which you have programs that you intend to compile
with Enterprise COBOL.

The Debug Tool Load Module Analyzer can determine the language translator that
was used for each object in your program objects. See “Debug Tool Load Module
Analyzer” on page 256 for more information.

The free and open source COBOL Analyzer can provide assistance in taking an
inventory of your existing program objects by reporting the compiler, compiler
release, and compiler options used. See “Free and open source COBOL Analyzer”
on page 256 for more information.

Language Environment can help you find out whether you are ever running
OS/VS COBOL programs from your inventory. Install the fix for APAR PM86742 to
your Language Environment and look for one of these warning messages about
detected OS/VS COBOL programs at run time:

IGZ0268W
An invocation was made of OS/VS COBOL program "program-name".

IGZ0269W
"program-lang" version "program-version" program "program-name" made
a call to OS/VS COBOL program "program-name".

Rational Asset Analyzer for z/OS can aid by analyzing the impact of a code
change for an application. See “Rational Asset Analyzer” on page 253 for more
information.

Taking an inventory of vendor tools, packages, and products
Before you can begin upgrading your source, you must know whether your
vendor tools, packages, and products are designed to work with Enterprise
COBOL. Verify:
v COBOL code generators generate 85 COBOL Standard programs that can be

compiled with Enterprise COBOL.
v COBOL packages are written in 85 COBOL Standard language that can be

compiled with Enterprise COBOL.
v Third-party tools such as debuggers and databases support Enterprise COBOL.

Chapter 4. Planning to upgrade source programs 29

|
|
|
|

Taking an inventory of COBOL applications
For each program in your COBOL applications, include at least the following
information in your inventory:

For all previous versions of COBOL:

v Programmer responsible
v COBOL Standard level of source program (68, 74, 85)
v Compiler used (ANS COBOL V4, OS/VS COBOL, VS COBOL II, IBM COBOL,

Enterprise COBOL V3, Enterprise COBOL V4)
v Compiler options used, especially CMPR2, NORES, XMLPARSE
v Precompiler options used
v Postprocessing options used
v COBOL modules
v COPY library members used in COBOL programs
v Called subprograms
v Calling programs
v Frequency of execution
v Test cases required and available
v Programs containing Report Writer statements
v Use of SIMVRDS, SOM-based OO, Millennium Language Extensions, or LABEL

declaratives

This information is useful to you in the next step of your planning task,
“Prioritizing your applications.”

Prioritizing your applications
Using the complete inventory, you can now prioritize the conversion effort as
described below.
1. Assign complexity ratings to each item in your completed inventory and

determine each program or application's resulting overall complexity rating.
2. Determine the conversion priority of each program or application.

Assigning complexity ratings
Complexity ratings are defined based on the effort required to convert, test, and
coordinate a construct or program. The ratings used in Table 6 on page 31 are
defined as:

Complexity
rating Requirement

0 All code converted by CCCA without error; code compiles correctly
under Enterprise COBOL

1-3 Most code converted without error by CCCA
Requires moderate testing
Requires moderate coordination
Most code converted without error by CCCA

4 Requires CCCA and possible manual conversion
Requires special testing considerations

30 Enterprise COBOL for z/OS, V5.2 Migration Guide

Complexity
rating Requirement

5-6 Requires moderate to high degree of coordination
Requires moderate to high degree of testing for functional
equivalence Requires conversion in addition to CCCA
(manual or automated)

7-8 Requires high degree of coordination
Requires high degree of testing for functional equivalence

9 Requires very high degree of coordination
Requires very high degree of testing for functional equivalence

10 Requires rewrite of module

Based on the complexity ratings shown above (or your own defined complexity
ratings), you can now assign a complexity rating to each attribute within a
program. Use the highest complexity rating listed as the overall rating for that
program. For an application, the highest complexity rating that you assign for any
program within the application is the complexity rating for the entire application.

Table 6 shows estimated complexity ratings for conversions of specific program
attributes.

Table 6. Complexity ratings for program attribute conversions

Program attribute Description of attribute Complexity rating

Lines of source code 1000 or less 0

5000 to 10,000 3

10,000 to 20,000 + 5

Fixed file attribute mismatch (FS 39)1 4

VS COBOL II or later compiled with
CMPR2

Compiler option CMPR2 not supported 1 C

74 COBOL Standard COPY library
members

1 M C

ANS COBOL V4 COPY library members 1 to 10 2 M C

10 to 20 5 M C

20 + 6 M C

Stability Program with no plans for changes 0

Program changes twice a year 3

Program changes every month or more often 8+

Files accessed 1 to 3 1 M C

3 to 5 2 M C

6 + 3 M C

No source code for module Module needs rewrite 102

Module does not need to be upgraded 6

CICS macro level program 10

Compiled by Full ANS COBOL V4
compiler (pre- compiler)

4 C

Chapter 4. Planning to upgrade source programs 31

Table 6. Complexity ratings for program attribute conversions (continued)

Program attribute Description of attribute Complexity rating

Compiled by OS/VS COBOL Release 2
compiler

LANGLVL(2) no manual changes 1 M C

LANGLVL(1) no manual changes 1 M C

LANGLVL(2) manual changes 4 M C

LANGLVL(1) manual changes 4 M C

Uses language with changed results Complex OCCURS DEPENDING ON 4 C

Combined abbreviated relation conditions 6 M

Floating-point arithmetic 6 M

Exponentiation 6 M

Signed data 2

Binary data 2

Access methods used ISAM3 10 M C

BDAM 10 C4

TCAM 10

Uses Report Writer language (if not using
Report Writer Precompiler)

6 M C

Uses Report Writer language (if using
Report Writer Precompiler)

0

CICS 4

SIMVRD 3

SOM-based OO 8

LABEL declaratives 3

XMLPARSE(COMPAT) 7

1. For additional information, see Appendix G, “Preventing file status 39 for QSAM files,” on page 285.

2. Non-IBM vendors can recreate COBOL source code from object code.

3. Support for ISAM was removed with z/OS 1.7.

4. This is a partial conversion.

On categories marked M you can gather information using the OS/VS COBOL MIGR option. On categories marked
C you can gather information using the COBOL conversion tool (CCCA).

Determining conversion priority
After you have determined the complexity rating for each program in your
inventory, you can make informed decisions about the programs that you want to
upgrade, and the order in which you want to upgrade them.

Table 7 shows one method of relating program complexity ratings to conversion
priorities. (The highest priority is “1” and the lowest priority is “6”.)

Table 7. Assigning program conversion priorities

Conversion
priority

Complexity
rating Other considerations

1 0 to 3 Great importance to your organization
Low conversion effort using conversion tools

32 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 7. Assigning program conversion priorities (continued)

Conversion
priority

Complexity
rating Other considerations

2 4 to 6 Great importance to your organization
Medium conversion effort using conversion tools

0 to 3 Medium importance to your organization
Low conversion effort using conversion tools

3 7 to 8 Great importance to your organization
High conversion effort using conversion tools

3 to 6 Medium importance to your organization
Medium conversion effort using conversion tools

0 to 3 Small importance to your organization
Low conversion effort using conversion tools

4 9 to 10 Great importance to your organization
Very high conversion effort

7 to 8 Medium importance to your organization
High conversion effort using conversion tools

3 to 6 Small importance to your organization
Medium conversion effort using conversion tools

5 9 to 10 Medium importance to your organization
Very high conversion effort

7 to 8 Small importance to your organization
High conversion effort using conversion tools

6 9 to 10 Small importance to your organization
Very high conversion effort

Consider the following situations when deciding on conversion priorities:
v If your application is at the limits of the storage available below the 16-MB line,

it is a prime candidate for conversion to Enterprise COBOL. With z/OS
architecture you can obtain virtual storage constraint relief.

After you determine the priority of each program that you need to upgrade and
the effort required to upgrade those programs, you can decide the order in which
you want to convert your applications and programs.

There might be some programs that you do not want to convert at all, such as:
v Programs for which you have no source code, that will never need

recompilation, and that run correctly under Language Environment
v Programs of low importance to your organization that run correctly under

Language Environment and that would take a very high conversion effort
v Programs that are being phased out of production

Note, however, that there might be restrictions on running existing modules mixed
with upgraded programs. See Chapter 16, “Adding Enterprise COBOL Version 5
programs to existing COBOL applications,” on page 195.

Chapter 4. Planning to upgrade source programs 33

Setting up a conversion procedure
The summaries and diagrams on the following pages outline the steps required to
upgrade five types of programs:
v Programs without CICS or Report Writer
v Programs converted to structured programming code
v Programs with CICS
v Programs with Report Writer statements to be discarded
v Programs with Report Writer statements to be retained

In the following flowcharts, you are directed to manually upgrade your programs
if you are not using CCCA. If you do not want to use CCCA, you should consider
using a non-IBM vendor's conversion tool before attempting a manual conversion.

Programs without CICS or Report Writer
To convert an OS/VS COBOL program that contains neither CICS commands nor
Report Writer statements to an Enterprise COBOL program, do the steps shown in
the flowchart below.

34 Enterprise COBOL for z/OS, V5.2 Migration Guide

Programs with CICS
To convert an OS/VS COBOL program that contains CICS commands to an
Enterprise COBOL program, do the steps shown in the flowchart below.

Figure 1. Steps for converting an OS/VS COBOL program to an Enterprise COBOL program

Chapter 4. Planning to upgrade source programs 35

Figure 2. Steps for converting an OS/VS COBOL program containing CICS commands

36 Enterprise COBOL for z/OS, V5.2 Migration Guide

Programs with Report Writer statements to be discarded
To convert an OS/VS COBOL program with Report Writer statements to Enterprise
COBOL, and remove Report Writer statements, perform the steps shown in the
flowchart below.

Chapter 4. Planning to upgrade source programs 37

Programs with Report Writer statements to be retained
To convert an OS/VS COBOL program that contains Report Writer statements to
an Enterprise COBOL program, and retain the Report Writer statements in the

Figure 3. Steps for converting an OS/VS COBOL program and discarding Report Writer statements

38 Enterprise COBOL for z/OS, V5.2 Migration Guide

source code, do the steps shown in the flowchart below.

Making application program updates
The following application programming tasks are necessary when upgrading your
source. They should be performed in roughly the following order:

Save the existing source as a backup (a benchmark to compare to and a version to
which to recover if the converted modules have problems).
1. Update the job and module documentation.

Figure 4. Steps for converting an OS/VS COBOL program and retaining Report Writer statements

Chapter 4. Planning to upgrade source programs 39

It is extremely important that all updates be properly documented. COBOL
itself is reasonably self-documenting. However, keep a log of the compiler
options you specify and the reasons for specifying them. Also document any
special system considerations. This is an iterative process and should be
performed throughout the conversion programming task.

2. Update the available source code.
Whenever possible, use the conversion tools described in Appendix C,
“Conversion tools for source programs,” on page 249. Otherwise, update the
source code manually.

3. Compile, bind (link-edit), and run.
It is recommended that you compile and test two times. The first time, compile
with INITCHECK, NUMCHECK, and SSRANGE; and then after a successful
test, recompile with NOINITCHECK, NONUMCHECK, and NOSSRANGE for
production.
It is also recommended that you recompile all programs in an application as
you upgrade. This way you will shake out all possible problems and also get
the maximum performance benefit of Enterprise COBOL V5.
After the source has been updated, you can process the program as you would
a newly written Enterprise COBOL program.

4. Debug.
Analyze program output and, if the results are not correct, use Debug Tool or
Language Environment dump output to uncover any errors.

5. Test the converted programs.
Compare results of the newly recompiled version of the application with the
existing version of the application to make sure that the results are the same.
Some customers have used the code coverage feature of Debug Tool to make
sure that their programs have the same behavior with COBOL V5 as they did
with previous COBOL compilers, as well as comparing output of the programs.
After upgrading your source to Enterprise COBOL, set up a procedure for
regression testing. Regression testing will help to identify:
v Fixed file attribute mismatches (file status 39 problems). Verify that your

COBOL record descriptions, JCL DD statements, and physical file attributes
match. For more information, see Appendix G, “Preventing file status 39 for
QSAM files,” on page 285.

v Performance differences.
v Sign handling problems—S0C7 abends. The data's sign must match the signs

allowed by the NUMPROC compiler option suboption that you specify.
v DATA(24) issues. Do not mix AMODE 24 programs with 31-bit data.
After you have established a regression testing procedure, and after your
programs run correctly, test them against a variety of data:
v Locally: Each program separately
v Globally: Programs in a run unit in interaction with each other
In this way, you can exercise all the program processing features to help ensure
that there are no unexpected execution differences.

6. Repeat when necessary.
Make any further corrections that you need, and then recompile, relink, rerun,
and, if necessary, continue to debug.

7. Cut over to production mode.

40 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

When your testing shows that the entire application receives the expected
results, you can move the entire unit over to production mode. (This assumes
you have completed your migration to Language Environment.)
In case of unexpected errors, be prepared for instant recovery:
v Under z/OS, run the old version as a substitute from the latest productivity

checkpoint.
v Under DB2 and IMS return to the last commit point and then continue

processing from that point using the unmigrated COBOL program. (For DB2,
use an SQL ROLLBACK WORK statement.)

v For non-CICS applications, use your shop's backup and restore facilities to
recover.

8. Run in production mode.
After cut over, monitor the application for a short time to ensure that you are
getting the results expected. After that, your source conversion task is
completed.

Chapter 4. Planning to upgrade source programs 41

42 Enterprise COBOL for z/OS, V5.2 Migration Guide

Part 3. Upgrading programs

© Copyright IBM Corp. 1991, 2019 43

44 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 5. Upgrading OS/VS COBOL source programs

There are differences between OS/VS COBOL language and Enterprise COBOL
language that might require that you upgrade your programs.

This information will help you evaluate, from a language standpoint, which
applications are good candidates for upgrading to Enterprise COBOL.

Besides the specific topics listed in this section, there has also been a change in
tape user Label support. Support for the format 2 declarative syntax:
USE...AFTER...LABEL PROCEDURE..., and optionally the syntax: GO TO
MORE-LABELS was removed in Enterprise COBOL V5

Also consider changes in reserved words as described in Appendix B, “COBOL
reserved word comparison,” on page 233.

Enterprise COBOL provides 85 COBOL Standard support. When upgrading your
OS/VS COBOL programs to Enterprise COBOL, you must convert them to 85
COBOL Standard programs in order to compile them with Enterprise COBOL.

This section is not intended to be a syntax guide. You can find complete
descriptions and coding rules for the relevant COBOL language elements in:
v VS COBOL for OS/VS Reference GC26-3857-04

v Enterprise COBOL Language Reference SC14-7381

Tips:

1. VS COBOL for OS/VS Reference is no longer available from IBM.
2. There are special considerations related to CICS. OS/VS COBOL programs no

longer run under CICS. Any OS/VS programs to be run under CICS must be
upgraded to Enterprise COBOL.

3. In the following sections, any reference to 68 COBOL Standard is a reference to
the COBOL language supported by IBM Full American National Standard
COBOL Version 4 (Program 5734-CB2), or to LANGLVL(1) of OS/VS COBOL
(Program 5740-CB1).

4. Information throughout this Migration Guide about OS/VS COBOL applies to
OS/VS COBOL Release 2.4, with the latest service updates applied.

Comparing OS/VS COBOL to Enterprise COBOL
OS/VS COBOL supported the 68 COBOL Standard (LANGLVL(1)) and the 74
COBOL Standard (LANGLVL(2)). Enterprise COBOL supports the 85 COBOL
Standard. In addition to the language differences between the 74 COBOL Standard
and Enterprise COBOL, your OS/VS COBOL programs might contain
undocumented OS/VS COBOL extensions.

Language elements that require change (quick reference)
Table 8 on page 46 lists the language elements different in OS/VS COBOL and
Enterprise COBOL. This table also lists conversion tools, if any, available to
automate the conversion.

© Copyright IBM Corp. 1991, 2019 45

The language items listed below are described in detail throughout this section,
and are classified and ordered according to the following categories:
v OS/VS COBOL language elements requiring other products
v OS/VS COBOL language elements not supported
v OS/VS COBOL language elements implemented differently
v Undocumented OS/VS COBOL extensions not supported

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL
Language element Conversion tool Page

Abbreviated combined relation conditions “Abbreviated
combined relation
conditions and use
of parentheses” on
page 62

ACCEPT statement “ACCEPT
statement” on page
63

ALPHABETIC class changes CCCA “ALPHABETIC
class changes” on
page 70

ALPHABET clause changes—ALPHABET key word CCCA “ALPHABET-
NAME clause
changes:
ALPHABET
keyword ” on page
71

Area A, periods in CCCA “Periods in Area A ”
on page 66

Arithmetic statement changes “Arithmetic
statement changes ”
on page 71

ASSIGN . . . OR CCCA “ASSIGN . . . OR”
on page 56

ASSIGN TO integer system-name CCCA “ASSIGN . . . OR”
on page 56

ASSIGN . . . FOR MULTIPLE REEL /UNIT CCCA “ASSIGN . . . FOR
MULTIPLE
REEL/UNIT ” on
page 56

ASSIGN clause changes—assignment-name forms CCCA “ASSIGN clause
changes” on page 71

B symbol in PICTURE clause—changes in evaluation “B symbol in
PICTURE clause:
changes in
evaluation ” on
page 71

BDAM file handling CCCA* 55

BLANK WHEN ZERO clause and asterisk (*) override “BLANK WHEN
ZERO clause and
asterisk (*)
override” on page
63

CALL identifier statement—B symbol in PICTURE clause “B symbol in
PICTURE clause:
changes in
evaluation ” on
page 71

CALL statement changes—procedure names and file names in USING phrase “CALL statement
changes ” on page
72

CANCEL statement—B symbol in PICTURE clause “B symbol in
PICTURE clause:
changes in
evaluation ” on
page 71

46 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)
Language element Conversion tool Page

CLOSE . . . FOR REMOVAL statement “CLOSE . . . FOR
REMOVAL
statement” on page
63

CLOSE statement—WITH POSITIONING, DISP phrases CCCA “CLOSE statement:
WITH
POSITIONING,
DISP phrases ” on
page 56

Combined abbreviated relation condition changes CCCA “Combined
abbreviated relation
condition changes”
on page 72

Comparing group to numeric packed-decimal item “Comparing group
to numeric
packed-decimal
item” on page 63

COPY statement with associated names CCCA “COPY statement
with associated
names ” on page 74

Communication feature 55

CURRENCY-SIGN clause changes—'/', '=', and 'L' characters “CURRENCY-SIGN
clause changes: '/',
'=', and 'L'
characters” on page
74

CURRENT-DATE special register CCCA “CURRENT-DATE
special register ” on
page 56

DIVIDE . . . ON SIZE ERROR—change in intermediate results “ON SIZE ERROR
phrase: changes in
intermediate results
” on page 79

Dynamic CALL statements to programs with alternate entry points without an intervening CANCEL “Dynamic CALL
statements to
ENTRY points ” on
page 74

EXAMINE statement CCCA “EXAMINE
statement ” on page
57

EXHIBIT statement CCCA “Corrective action
for EXHIBIT
NAMED” on page
57

EXIT PROGRAM/GOBACK statement changes “EXIT
PROGRAM/
GOBACK statement
changes ” on page
74

FILE STATUS clause changes CCCA “FILE STATUS
clause changes ” on
page 75

FILE-LIMIT clause of the FILE-CONTROL paragraph CCCA “FILE-LIMIT clause
of the
FILE-CONTROL
paragraph ” on
page 58

Flow of control, no terminating statement “Flow of control, no
terminating
statement” on page
63

FOR MULTIPLE REEL/UNIT CCCA “ASSIGN . . . FOR
MULTIPLE
REEL/UNIT ” on
page 56

Chapter 5. Upgrading OS/VS COBOL source programs 47

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)
Language element Conversion tool Page

GIVING phrase of USE AFTER STANDARD ERROR declarative CCCA “GIVING phrase of
USE AFTER
STANDARD
ERROR declarative
” on page 58

IF . . . OTHERWISE statement changes CCCA “IF . . .
OTHERWISE
statement changes ”
on page 77

Index names—nonunique “Index names” on
page 64

INSPECT statement—PROGRAM COLLATING SEQUENCE clause “PROGRAM
COLLATING
SEQUENCE clause
changes ” on page
80

IS as an optional word “Optional word IS ”
on page 80

ISAM file handling CCCA 54

JUSTIFIED clause changes CCCA “JUSTIFIED clause
changes ” on page
77

LABEL RECORDS clause with TOTALING/TOTALED AREA CCCA “LABEL RECORDS
clause with
TOTALING/
TOTALED AREA
phrases ” on page
59

LABEL RECORD IS statement “LABEL RECORD
IS statement” on
page 64

MOVE statement—binary value and DISPLAY value “MOVE statement -
binary value and
DISPLAY value” on
page 64

MOVE statements and comparisons—scaling changes “MOVE statements
and comparisons:
scaling changes ” on
page 78

MOVE CORRESPONDING statement CCCA “MOVE
CORRESPONDING
statement” on page
64

MOVE statement—multiple TO specification “MOVE statement -
multiple TO
specification” on
page 65

MOVE ALL—TO PIC 99 “MOVE ALL - TO
PIC 99” on page 65

MOVE statement—warning message for numeric truncation “MOVE statement -
warning message
for numeric
truncation” on page
65

MULTIPLY ... ON SIZE ERROR—change in intermediate results “ON SIZE ERROR
phrase: changes in
intermediate results
” on page 79

Nonunique program-ID names CCCA “PROGRAM-ID
names, nonunique ”
on page 67

NOTE statement CCCA “NOTE statement ”
on page 59

Numeric class test on group items “Numeric class test
on group items” on
page 78

48 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)
Language element Conversion tool Page

Numeric data changes “Numeric data
changes” on page 78

Numeric-editing changes (PICTURE clause) “PICTURE string ”
on page 67

OCCURS clause (order of phrases) “OCCURS clause”
on page 65

OCCURS DEPENDING ON—
ASCENDING and DESCENDING KEY phrases

“OCCURS
DEPENDING ON
clause:
ASCENDING and
DESCENDING KEY
phrase” on page 78

OCCURS DEPENDING ON—value for receiving items changed CCCA “OCCURS
DEPENDING ON
clause: value for
receiving items
changed ” on page
78

ON statement CCCA “ON statement ” on
page 59

ON SIZE ERROR phrase—changes in intermediate results “ON SIZE ERROR
phrase: changes in
intermediate results
” on page 79

OPEN statement failing for QSAM files (file status 39) “OPEN statement
failing for VSAM
files (file status 39)”
on page 59

OPEN statement failing for VSAM files (file status 39) “OPEN statement
failing for QSAM
files (file status 39)”
on page 59

OPEN statement with LEAVE, REREAD, and DISP phrases CCCA “OPEN statement
with the LEAVE,
REREAD, and DISP
phrases ” on page
60

OPEN REVERSED statement “OPEN REVERSED
statement” on page
66

OTHERWISE clause changes “IF . . .
OTHERWISE
statement changes ”
on page 77

Paragraph names not allowed as parameters “CALL statement
changes ” on page
72

PERFORM statement—changes in the VARYING and AFTER phrases “PERFORM
statement: changes
in the
VARYING/AFTER
phrases ” on page
80

PERFORM statement—second UNTIL “PERFORM
statement - second
UNTIL” on page 66

Periods, consecutive in any division “Periods,
consecutive in any
division ” on page
66

Periods in Area A CCCA “Periods in Area A ”
on page 66

Periods missing on paragraphs CCCA “Periods missing on
paragraphs ” on
page 67

Chapter 5. Upgrading OS/VS COBOL source programs 49

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)
Language element Conversion tool Page

Periods missing at the end of SD, FD, or RD “Periods missing at
the end of SD, FD,
or RD ” on page 67

PICTURE clause (numeric-editing changes) “PICTURE string ”
on page 67

PROGRAM COLLATING SEQUENCE clause changes “PROGRAM
COLLATING
SEQUENCE clause
changes ” on page
80

Program-ID names, nonunique CCCA “PROGRAM-ID
names, nonunique ”
on page 67

Qualification - using the same phrase repeatedly “Qualification -
using the same
phrase repeatedly ”
on page 67

READ statement - redefined record keys in the KEY phrase “READ statement -
redefined record
keys in the KEY
phrase” on page 67

READ and RETURN statement changes—INTO phrase “READ and
RETURN statement
changes: INTO
phrase ” on page 81

READY TRACE and RESET TRACE statements CCCA “READY TRACE
and RESET TRACE
statements ” on
page 60

RECORD CONTAINS n CHARACTERS clause “RECORD
CONTAINS n
CHARACTERS
clause ” on page 67

RECORD KEY phrase and ALTERNATE RECORD KEY phrase “RECORD KEY
phrase and
ALTERNATE
RECORD KEY
phrase” on page 67

REDEFINES clause in SD or FD entries CCCA “REDEFINES clause
in SD or FD entries”
on page 68

REDEFINES clause with tables “REDEFINES clause
with tables” on
page 68

Relation conditions CCCA “Relation
conditions” on page
68

REMARKS paragraph CCCA “REMARKS
paragraph ” on
page 61

RENAMES clause—nonunique, nonqualified data names “RENAMES clause -
nonunique,
nonqualified data
names ” on page 69

Report Writer statements Report Writer
Precompiler

53

RERUN clause changes “RERUN clause
changes ” on page
81

RESERVE clause changes CCCA “RESERVE clause
changes ” on page
81

Reserved word list changes CCCA “Reserved word list
changes” on page 81

50 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)
Language element Conversion tool Page

SEARCH statement changes CCCA “SEARCH statement
changes ” on page
81

Segmentation changes—PERFORM statement in independent segments “Segmentation
changes: PERFORM
statement in
independent
segments ” on page
82

SELECT statement without a corresponding FD “SELECT statement
without a
corresponding FD”
on page 69

SELECT OPTIONAL clause changes CCCA “SELECT
OPTIONAL clause
changes ” on page
82

SORT special registers “SORT special
registers ” on page
82

SORT verb “SORT verb” on
page 69

SORT or MERGE “SORT or MERGE”
on page 69

Source language debugging changes “Source language
debugging changes
” on page 83

START . . . USING KEY statement CCCA “START . . . USING
KEY statement ” on
page 61

STRING statement—PROGRAM COLLATING SEQUENCE clause “PROGRAM
COLLATING
SEQUENCE clause
changes ” on page
80

STRING statement—sending field identifier “STRING statement
- sending field
identifier ” on page
69

Subscripts out of range—flagged at compile-time “Subscripts out of
range flagged at
compile time ” on
page 83

THEN as a statement connector CCCA “THEN as a
statement connector
” on page 61

TIME-OF-DAY special register CCCA “TIME-OF-DAY
special register ” on
page 61

TOTALING/TOTALED AREA phrases in LABEL RECORDS clause CCCA “LABEL RECORDS
clause with
TOTALING/
TOTALED AREA
phrases ” on page
59

TRANSFORM statement CCCA “TRANSFORM
statement ” on page
61

UNSTRING statement—PROGRAM COLLATING SEQUENCE clause “PROGRAM
COLLATING
SEQUENCE clause
changes ” on page
80

Chapter 5. Upgrading OS/VS COBOL source programs 51

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)
Language element Conversion tool Page

UNSTRING statement—coding with 'OR', 'IS', or a numeric edited item CCCA “UNSTRING
statement - coding
with 'OR', 'IS', or a
numeric edited item
” on page 69

UNSTRING statement—multiple INTO phrases “UNSTRING
statement - multiple
INTO phrases ” on
page 70

UNSTRING statements—subscript evaluation changes “UNSTRING
statements:
subscript evaluation
changes ” on page
83

UPSI switches CCCA “UPSI switches ” on
page 84

USE AFTER STANDARD ERROR—GIVING phrase CCCA “GIVING phrase of
USE AFTER
STANDARD
ERROR declarative
” on page 58

USE BEFORE STANDARD LABEL statement CCCA “USE BEFORE
STANDARD LABEL
” on page 62

VALUE clause—signed value in relation to the PICTURE clause CCCA “VALUE clause -
signed value in
relation to the
PICTURE clause ”
on page 70

VALUE clause—condition names CCCA “VALUE clause
condition names ”
on page 84

WHEN-COMPILED special register CCCA “WHEN-
COMPILED special
register ” on page
85

WRITE AFTER POSITIONING statement CCCA “WRITE AFTER
POSITIONING
statement” on page
85

* This is a partial conversion for handling BDAM files.

Converting to 85 COBOL Standard
To help you make the needed changes when upgrading to Enterprise COBOL, you
can use any of several means, including the information provided elsewhere in this
Migration Guide.

A brief description of two of the helpful mechanisms (CCCA and the MIGR
option) follows. For additional information, see Appendix C, “Conversion tools for
source programs,” on page 249.

Tip: Non-IBM tools are also available to help automate the conversion to the 85
COBOL Standard.

COBOL Conversion Tool (CCCA)
The COBOL and CICS/VS Command Level Conversion Aid (CCCA) is not for
CICS only; it converts any old COBOL to Enterprise COBOL. The CCCA provides
you with either a report of the statements that need to be changed or the actual
converted program itself.

52 Enterprise COBOL for z/OS, V5.2 Migration Guide

For details, see “COBOL and CICS/VS Command Level Conversion Aid (CCCA)”
on page 253 and the COBOL and CICS/VS Command Level Conversion Aid Program
Description and Operations Manual.

OS/VS COBOL MIGR compiler option
The OS/VS COBOL MIGR compiler option flags most statements in an OS/VS
COBOL program that are not supported or are changed in Enterprise COBOL. The
MIGR compiler option allows you to analyze the conversion effort, and helps you
identify required changes, without purchasing any conversion tools. Thus, for each
of your programs, even before conversion, you can get a good idea of how much
conversion effort will be required.

“MIGR compiler option” on page 249 lists the items flagged by MIGR. A complete
description of MIGR-flagged items is included in Appendix H of IBM VS COBOL
for OS/VS.

Language elements that require other products for support
Although some OS/VS COBOL language elements are not supported in Enterprise
COBOL, you can get equivalent function by using other products.

Report Writer
The Report Writer feature is supported through use of the Report Writer
Precompiler. In order for existing Report Writer code to work with Enterprise
COBOL, you have the following considerations:
v Keep existing Report Writer code and use the Report Writer Precompiler
v Convert existing Report Writer code using the Report Writer Precompiler
v Run existing OS/VS COBOL-compiled Report Writer programs under Language

Environment
v Report Writer language items affected

Keep existing Report Writer code and use the Report Writer
Precompiler
When you recompile existing Report Writer applications (or newly written
applications) with the Report Writer Precompiler, and use the output as input to
the Enterprise COBOL compiler, your Report Writer applications can run above the
16-MB line. Through Enterprise COBOL, you can also extend their processing
capabilities.

This method requires the use of both the Report Writer Precompiler and the
Enterprise COBOL compiler.

You can run Report Writer Precompiler as a separate precompiler, or incorporate it
into the COBOL compilation by using the EXIT compiler option.

Convert existing Report Writer code using the Report Writer
Precompiler
If you permanently convert Report Writer code to non-Report Writer code, you can
stop using the Report Writer Precompiler and just use the Enterprise COBOL
compiler. However, this might produce hard-to-maintain COBOL code.

When converting Report Writer code to non-Report Writer code, the Precompiler
generates variable names and paragraph names. These names might not be

Chapter 5. Upgrading OS/VS COBOL source programs 53

meaningful, and thus hard to identify when attempting to make changes to the
program after the conversion. You can change the names to be meaningful, but this
might be difficult and time consuming.

Run existing OS/VS COBOL-compiled Report Writer programs
under Language Environment
You can run existing OS/VS COBOL Report Writer applications using Language
Environment without compiling with Enterprise COBOL but they cannot be mixed
with Enterprise COBOL V5. If you want to mix Enterprise COBOL V5 programs
with OS/VS COBOL Report Writer programs, you must convert all of the
programs to use Enterprise COBOL V5, and use the Report Writer Precompiler.

OS/VS COBOL Report Writer programs will not run above the 16-MB line.

Report Writer language items affected
The following Report Writer language items are accepted by Enterprise COBOL
only when the Report Writer precompiler is installed:

GENERATE statement
INITIATE statement
LINE-COUNTER special register
Nonnumeric literal IS mnemonic-name
PAGE-COUNTER special register
PRINT-SWITCH special register
REPORT clause of FD entry
REPORT SECTION
TERMINATE statement
USE BEFORE REPORTING declarative

The Report Writer Precompiler is described in Appendix C, “Conversion tools for
source programs,” on page 249

Language elements that are not implemented
The following OS/VS COBOL language elements are not supported by Enterprise
COBOL:
v ISAM file handling
v BDAM file handling
v Communication feature

With Enterprise COBOL, support for most of the 68 COBOL Standard language
elements has been removed. There are also miscellaneous OS/VS COBOL language
items that are not implemented in Enterprise COBOL.

The language elements affected and the conversion actions that you can perform
are documented in the following sections. There is a brief description of each item,
plus conversion suggestions and, where helpful, coding examples.

ISAM file handling
Enterprise COBOL does not support the processing of ISAM files, nor does z/OS
V1.7 and later releases. You must convert ISAM files to VSAM/KSDS files before
you move to z/OS V1.7 or later.

54 Enterprise COBOL for z/OS, V5.2 Migration Guide

ISAM file handling language items affected
The following ISAM language items are not accepted by Enterprise COBOL:

APPLY CORE-INDEX
APPLY REORG-CRITERIA
File declarations for ISAM files
NOMINAL KEY clause
Organization parameter I
TRACK-AREA clause
USING KEY clause of START statement

Conversion options: Two conversion tools can help you convert ISAM files to
VSAM/KSDS files. You can use either IDCAMS REPRO or CCCA. The IDCAMS
REPRO facility will perform the conversion unless the file has a hardware
dependency. IDCAMS repro will only work for ISAM files on z/OS V1.6 or earlier.
You must migrate ISAM to VSAM/KSDS before moving to z/OS V1.7 or later.

The COBOL conversion tool (CCCA) can automatically convert the file definition
and I/O statements from your ISAM COBOL language to VSAM/KSDS COBOL
language. The CCCA conversion tool is described in Appendix C, “Conversion
tools for source programs,” on page 249.

BDAM file handling
Enterprise COBOL does not support the processing of BDAM files. Convert any
BDAM files to virtual storage access method/relative record data set
(VSAM/RRDS) files.

BDAM file handling language items affected
The following BDAM language items are not accepted by Enterprise COBOL:

ACTUAL KEY clause
APPLY RECORD-OVERFLOW
File declarations for BDAM files
Organization parameters D, R, W
SEEK statement
TRACK-LIMIT clause

Automated conversion options: The COBOL conversion tool (CCCA) can
automatically convert your BDAM COBOL language to VSAM/RRDS COBOL
language, however, you must provide the key algorithm. The CCCA conversion
tool is described in Appendix C, “Conversion tools for source programs,” on page
249.

Communication feature
The Communication feature is not supported by Enterprise COBOL.

Communication language items affected
The following communication language items are not accepted by Enterprise
COBOL:

ACCEPT MESSAGE COUNT statement
COMMUNICATION SECTION
DISABLE statement
ENABLE statement

Chapter 5. Upgrading OS/VS COBOL source programs 55

RECEIVE statement
SEND statement

Communication conversion actions
Existing TCAM applications that use the OS/VS COBOL SEND and RECEIVE
statements run under Language Environment with one exception: the QUEUE
runtime option of OS/VS COBOL is not supported. (The QUEUE runtime option is
used only in an OS/VS COBOL program with a RECEIVE statement in a CD . . .
FOR INITIAL INPUT.)

For more information, see the IBM VS COBOL for OS/VS, and the IBM OS/VS
COBOL Compiler and Library Programmer's Guide.

Language elements that are not supported
Enterprise COBOL does not support the following OS/VS COBOL language
elements. When upgrading to Enterprise COBOL, you must either remove or alter
these items as indicated in the following descriptions:

ASSIGN . . . OR
OS/VS COBOL accepted the ASSIGN ... OR clause. To use this clause
under Enterprise COBOL, you must remove the OR.

ASSIGN TO integer system-name
OS/VS COBOL accepted the ASSIGN TO integer system-name clause. To use
this clause under Enterprise COBOL, you must remove the integer.

ASSIGN . . . FOR MULTIPLE REEL/UNIT
OS/VS COBOL accepted the ASSIGN ... FOR MULTIPLE REEL/UNIT
phrase, and treated it as documentation. Enterprise COBOL does not
support this phrase.

CLOSE statement: WITH POSITIONING, DISP phrases
OS/VS COBOL accepted the WITH POSITIONING and DISP phrases of
the CLOSE statement provided as IBM extensions in OS/VS COBOL. In
Enterprise COBOL, these phrases are not accepted.

CURRENT-DATE special register
OS/VS COBOL accepted the CURRENT-DATE special register. It is valid
only as the sending field in a MOVE statement. CURRENT-DATE has the
8-byte alphanumeric format:
MM/DD/YY (month, day, year)

Enterprise COBOL supports the DATE special register. It is valid only as
the sending field in an ACCEPT statement. DATE has the 6-byte
alphanumeric format:
YYMMDD (year, month, day)

Therefore, you must change an OS/VS COBOL program with statements
similar to the following one:
77 DATE-IN-PROGRAM PICTURE X(8).

. . .
MOVE CURRENT-DATE TO DATE-IN-PROGRAM.

An example of one way to change it, keeping the two-digit year format, is
as follows:
01 DATE-IN-PROGRAM.

02 MONTH-OF-YEAR PIC X(02).
02 FILLER PIC X(01) VALUE "/".

56 Enterprise COBOL for z/OS, V5.2 Migration Guide

02 DAY-OF-MONTH PIC X(02).
02 FILLER PIC X(01) VALUE "/".
02 YEAR PIC X(02).

01 ACCEPT-DATE.
02 YEAR PIC X(02).
02 MONTH-OF-YEAR PIC X(02).
02 DAY-OF-MONTH PIC X(02).
. . .
ACCEPT ACCEPT-DATE FROM DATE.
MOVE CORRESPONDING ACCEPT-DATE TO DATE-IN-PROGRAM.

An example of how to change it and specify a four-digit year is as follows:
01 DATE-IN-PROGRAM.

02 MONTH-OF-YEAR PIC X(02).
02 FILLER PIC X(01) VALUE "/".
02 DAY-OF-MONTH PIC X(02).
02 FILLER PIC X(01) VALUE "/".
02 YEAR PIC X(04).

01 CURRENT-DATE.
02 YEAR PIC X(04).
02 MONTH-OF-YEAR PIC X(02).
02 DAY-OF-MONTH PIC X(02).
. . .
MOVE FUNCTION CURRENT-DATE(1:8) TO CURRENT-DATE.
MOVE CORRESPONDING CURRENT-DATE TO DATE-IN-PROGRAM.

EXAMINE statement
OS/VS COBOL accepted the EXAMINE statement; Enterprise COBOL does
not.

Therefore, if your OS/VS COBOL program contains coding similar to the
following one:
EXAMINE DATA-LENGTH TALLYING UNTIL FIRST " "

Replace it in Enterprise COBOL with:
MOVE 0 TO TALLY
INSPECT DATA-LENGTH TALLYING TALLY FOR CHARACTERS BEFORE " "

You can continue to use the TALLY special register wherever you can
specify a WORKING-STORAGE elementary data item of integer value.

EXHIBIT statement
OS/VS COBOL accepted the EXHIBIT statement; Enterprise COBOL does
not.

With Enterprise COBOL, you can use DISPLAY statements to replace
EXHIBIT statements. However, the DISPLAY statement does not perform
all the functions of the EXHIBIT statement.

Corrective action for EXHIBIT NAMED
You can replace the EXHIBIT NAMED statement directly with a DISPLAY
statement:

OS/VS COBOL Enterprise COBOL

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).
77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).

.
EXHIBIT NAMED DAT-1 DAT-2 DISPLAY "DAT-1 = " DAT-1

"DAT-2 = " DAT-2

Chapter 5. Upgrading OS/VS COBOL source programs 57

Corrective action for EXHIBIT CHANGED
You can replace the EXHIBIT CHANGED statement with IF and DISPLAY
statements, as follows:
1. Specify an IF statement to discover if the new value of the data item is

different from the old.
2. Specify a DISPLAY statement as the statement-1 of the IF statement.

This change displays the value of the specified data item only if the new
value is different from the old:

OS/VS COBOL Enterprise COBOL

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).
77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).

77 DAT1-CMP PIC X(8).
77 DAT2-CMP PIC X(8).

.
EXHIBIT CHANGED DAT-1 DAT-2 IF DAT-1 NOT EQUAL TO DAT1-CMP

DISPLAY DAT-1
END-IF
IF DAT-2 NOT EQUAL TO DAT2-CMP
DISPLAY DAT-2

END-IF
MOVE DAT-1 TO DAT1-CMP
MOVE DAT-2 TO DAT2-CMP

Corrective action for EXHIBIT CHANGED NAMED
You can replace the EXHIBIT CHANGED NAMED statement with IF and
DISPLAY statements, as follows:
1. Specify an IF statement to discover if the new value of the data item is

different from the old.
2. Specify a DISPLAY statement as the statement-1 of the IF statement.

This change displays the value of the specified data item only if the new
value is different from the old:

OS/VS COBOL Enterprise COBOL

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).
77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).

77 DAT1-CMP PIC X(8).
77 DAT2-CMP PIC X(8).

.
EXHIBIT CHANGED NAMED IF DAT-1 NOT EQUAL TO DAT1-CMP

DAT-1 DAT-2 DISPLAY "DAT-1 = " DAT-1
END-IF
IF DAT-2 NOT EQUAL TO DAT2-CMP

DISPLAY "DAT-2 = " DAT-2
END-IF
MOVE DAT-1 TO DAT1-CMP
MOVE DAT-2 TO DAT2-CMP

FILE-LIMIT clause of the FILE-CONTROL paragraph
OS/VS COBOL accepted the FILE-LIMIT clause and treats it as a comment;
Enterprise COBOL does not. Therefore, you must remove any occurrences
of the FILE-LIMIT clause.

GIVING phrase of USE AFTER STANDARD ERROR declarative
In OS/VS COBOL, you could specify the GIVING phrase of the USE
AFTER STANDARD ERROR declarative. Enterprise COBOL does not
support this phrase. Therefore, you must remove any occurrences of the
GIVING phrase of the USE AFTER STANDARD ERROR declarative.

58 Enterprise COBOL for z/OS, V5.2 Migration Guide

Use the FILE-CONTROL FILE STATUS clause to replace the GIVING
phrase. The FILE STATUS clause gives you information after each I/O
request, rather than only after an error occurs.

LABEL RECORDS clause with TOTALING/TOTALED AREA phrases
OS/VS COBOL allowed the TOTALING and TOTALED phrases of the
LABEL RECORDS clause.

Enterprise COBOL does not support these phrases. Therefore, you must
remove any occurrences of the TOTALING/TOTALED phrases from the
LABEL RECORDS clause. Also check the variables associated with these
phrases.

NOTE statement
OS/VS COBOL accepted the NOTE statement. Enterprise COBOL does not
accept the NOTE statement. Therefore, for Enterprise COBOL delete all
NOTE statements and use comment lines instead for the entire NOTE
paragraph.

ON statement
OS/VS COBOL accepted the ON statement. Enterprise COBOL does not
accept the ON statement.

The ON statement allows selective execution of statements it contains.
Similar functions are provided in Enterprise COBOL by the EVALUATE
statement and the IF statement.

OPEN statement failing for QSAM files (file status 39)
In OS/VS COBOL, the fixed file attributes for QSAM files did not need to
match your COBOL program or JCL for a successful OPEN. In Enterprise
COBOL, if the following conditions do not match, an OPEN statement in
your program might not run successfully:
v The fixed file attributes specified in the DD statement or the data set

label for a file
v The attributes specified for that file in the SELECT and FD statements of

your COBOL program

Mismatches in the attributes for file organization, record format (fixed or
variable), the code set, or record length result in a file status code 39, and
the OPEN statement fails.

To prevent common file status 39 problems, see Appendix G, “Preventing
file status 39 for QSAM files,” on page 285.

OPEN statement failing for VSAM files (file status 39)
In OS/VS COBOL, the RECORDSIZE defined in your VSAM files
associated with IDCAMS was not required to match your COBOL program
for a successful OPEN. In Enterprise COBOL they must match. The
following rules apply to VSAM ESDS, KSDS, and RRDS file definitions:

Table 9. Rules for VSAM file definitions

File type Rules

ESDS and
KSDS VSAM

RECORDSIZE(avg,m) is specified where avg is the average size of the
COBOL records, and is strictly less than m; m is greater than or equal
to the maximum size of a COBOL record.

RRDS VSAM RECORDSIZE(n,n) is specified where n is greater than or equal to the
maximum size of a COBOL record.

Chapter 5. Upgrading OS/VS COBOL source programs 59

OPEN statement with the LEAVE, REREAD, and DISP phrases
OS/VS COBOL allowed the OPEN statement with the LEAVE, REREAD
and DISP phrases. Enterprise COBOL does not allow these phrases.

To replace the REREAD function, define a copy of your input records in
the WORKING-STORAGE SECTION and move each record into
WORKING-STORAGE after it is read or use READ INTO.

READY TRACE and RESET TRACE statements
OS/VS COBOL allowed the READY TRACE and RESET TRACE
statements. Enterprise COBOL does not support these statements.

To get function similar to the READY TRACE statement, you can use either
Debug Tool, or the COBOL language available in the Enterprise COBOL
compiler.

If you use Debug Tool, compile your program with the TEST option and
use the following Debug Tool command:
"AT GLOBAL LABEL PERFORM;
LIST LINES %LINE; GO; END-PERFORM;"

If you use the COBOL language, the Enterprise COBOL USE FOR
DEBUGGING ON ALL PROCEDURES declarative can perform functions
similar to READY TRACE and RESET TRACE.

For example:
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370 WITH DEBUGGING MODE.
. . .

DATA DIVISION.
. . .
WORKING-STORAGE SECTION.
01 TRACE-SWITCH PIC 9 VALUE 0.

88 READY-TRACE VALUE 1.
88 RESET-TRACE VALUE 0.

. . .
PROCEDURE DIVISION.

DECLARATIVES.
COBOL-II-DEBUG SECTION.
USE FOR DEBUGGING ON ALL PROCEDURES.

COBOL-II-DEBUG-PARA.
IF READY-TRACE THEN

DISPLAY DEBUG-NAME
END-IF.

END DECLARATIVES.
MAIN-PROCESSING SECTION.
. . .
PARAGRAPH-3.
. . .
SET READY-TRACE TO TRUE.

PARAGRAPH-4.
. . .
PARAGRAPH-6.
. . .
SET RESET-TRACE TO TRUE.

PARAGRAPH-7.

where DEBUG-NAME is a field of the DEBUG-ITEM special register that
displays the procedure-name causing execution of the debugging
procedure. (In this example, the object program displays the names of
procedures PARAGRAPH-4 through PARAGRAPH-6 as control reaches
each procedure within the range.)

60 Enterprise COBOL for z/OS, V5.2 Migration Guide

At run time, you must specify PARM=/DEBUG in your EXEC statement to
activate this debugging procedure. In this way, you have no need to
recompile the program to activate or deactivate the debugging declarative.

REMARKS paragraph
OS/VS COBOL accepted the REMARKS paragraph.

Enterprise COBOL does not accept the REMARKS paragraph. As a
replacement, use comment lines beginning with an * in column 7 or use
the floating comment indicator *>.

START . . . USING KEY statement
OS/VS COBOL allowed the START statement with the USING KEY phrase;
Enterprise COBOL does not. In Enterprise COBOL, you can specify the
START statement with the KEY IS phrase.

THEN as a statement connector
OS/VS COBOL accepted the use of THEN as a statement connector.

The following example shows the OS/VS COBOL usage:
MOVE A TO B THEN ADD C TO D

Enterprise COBOL does not support the use of THEN as a statement
connector. Therefore, in Enterprise COBOL change it to:
MOVE A TO B
ADD C TO D

TIME-OF-DAY special register
OS/VS COBOL supported the TIME-OF-DAY special register. It was valid
only as the sending field in a MOVE statement. TIME-OF-DAY had the
following 6-byte EXTERNAL decimal format:
HHMMSS (hour, minute, second)

Enterprise COBOL does not support the TIME-OF-DAY special register.

Therefore, you must change an OS/VS COBOL program with statements
similar to the following one:
77 TIME-IN-PROGRAM PICTURE X(6).
. . .

MOVE TIME-OF-DAY TO TIME-IN-PROGRAM.

An example of one way to change it is as follows:
MOVE FUNCTION CURRENT-DATE (9:6) TO TIME-IN-PROGRAM

TRANSFORM statement
OS/VS COBOL supported the TRANSFORM statement. Enterprise COBOL
does not support the TRANSFORM statement, but it does support the
INSPECT statement. Therefore, any TRANSFORM statements in your
OS/VS COBOL program must be replaced by INSPECT CONVERTING
statements.

For example, in the following OS/VS COBOL TRANSFORM statement:
77 DATA-T PICTURE X(9) VALUE "ABCXYZCCC"

. . .
TRANSFORM DATA-T FROM "ABC" TO "CAT"

TRANSFORM evaluates each character, changing each A to C, each B to A,
and each C to T.

After the TRANSFORM statement is executed. DATA-T contains
"CATXYZTTT".

Chapter 5. Upgrading OS/VS COBOL source programs 61

For example, in the following INSPECT CONVERTING statement (valid
only in Enterprise COBOL):
77 DATA-T PICTURE X(9) VALUE "ABCXYZCCC"

. . .
INSPECT DATA-T

CONVERTING "ABC" TO "CAT"

INSPECT CONVERTING evaluates each character just as TRANSFORM
does, changing each A to C, each B to A, and each C to T.

After the INSPECT CONVERTING statement is executed. DATA-T contains
"CATXYZTTT:.

USE BEFORE STANDARD LABEL
OS/VS COBOL accepted the USE BEFORE STANDARD LABEL statement;
Enterprise COBOL does not.

Therefore, you must remove any occurrences of the USE BEFORE
STANDARD LABEL statement. Enterprise COBOL does not support
nonstandard labels, so you cannot process nonstandard labeled files with
Enterprise COBOL.

SEARCH ALL statements
If you have programs that contain SEARCH ALL statements and that were
compiled with OS/VS COBOL, you may need to make some changes due to
changes in the behavior of the SEARCH ALL statement

The new behavior for the SEARCH ALL statement is described in “Upgrading
programs that have SEARCH ALL statements” on page 102.

Undocumented OS/VS COBOL extensions that are not supported
This section consists primarily of COBOL statements that are not flagged by the
MIGR option. These statements were accepted by the OS/VS COBOL compiler;
some are not accepted by Enterprise COBOL.

Because these language elements are undocumented extensions to OS/VS COBOL,
they are not considered to be valid OS/VS COBOL code. This list might not
contain all undocumented extensions; it includes all of the undocumented
extensions of which we are aware.

Abbreviated combined relation conditions and use of parentheses
OS/VS COBOL accepted the use of parentheses within an abbreviated
combined relation condition.

Enterprise COBOL supports most parenthesis usage as IBM extensions.
However, there are two differences:
v Within the scope of an abbreviated combined relation condition,

Enterprise COBOL does not support relational operators inside
parentheses. For example:
A = B AND (< C OR D)

v Some incorrect usages of parentheses in relation conditions were
accepted by OS/VS COBOL, but are not by Enterprise COBOL. For
example:
(A = 0 AND B) = 0

62 Enterprise COBOL for z/OS, V5.2 Migration Guide

ACCEPT statement
OS/VS COBOL accepted the ACCEPT statement without the keyword
FROM between the identifier and the mnemonic or function name.

Enterprise COBOL does not accept such an ACCEPT statement.

BLANK WHEN ZERO clause and asterisk (*) override
In OS/VS COBOL, if you specified the BLANK WHEN ZERO clause and
the asterisk (*) as a zero suppression symbol for the same entry, zero
suppression would override BLANK WHEN ZERO.

Enterprise COBOL does not accept these two language elements when they
are specified for the same data description entry. Thus Enterprise COBOL
must not contain instances of both the clause and the symbol in one data
description entry.

If you have specified both the BLANK WHEN ZERO clause and the
asterisk as a zero suppression symbol in your OS/VS COBOL programs, to
get the same behavior in Enterprise COBOL, remove the BLANK WHEN
ZERO clause.

CLOSE . . . FOR REMOVAL statement
OS/VS COBOL allowed the FOR REMOVAL clause for sequential files, and
it had an effect on the execution of the program. Enterprise COBOL
syntax-checks the statement but it has no effect on the execution of the
program.

Comparing group to numeric packed-decimal item
OS/VS COBOL allowed a comparison between a group and a numeric
packed-decimal item, but generated code that produced an incorrect result.

For example, the result of the comparison below is the message
"1 IS NOT > 0"

and is not the numerically correct
"1 > 0"

05 COMP-TABLE.
10 COMP-PAY PIC 9(4).
10 COMP-HRS PIC 9(3).

05 COMP-ITEM PIC S9(7) COMP-3.

PROCEDURE DIVISION.
MOVE 0 TO COMP-PAY COMP-HRS.
MOVE 1 TO COMP-ITEM.
IF COMP-ITEM > COMP-TABLE

DISPLAY ’1 > 0’
ELSE

DISPLAY ’1 IS NOT > 0’.

Enterprise COBOL does not allow such a comparison.

Flow of control, no terminating statement
In OS/VS COBOL, it would be possible to link-edit an assembler program
to the end of an OS/VS COBOL program and have the flow of control go
from the end of the COBOL program to the assembler program.

In Enterprise COBOL, if you do not code a terminating statement at the
end of your program (STOP RUN or GOBACK), the program will
terminate with an implicit GOBACK. The flow of control cannot go beyond
the end of the COBOL program.

Chapter 5. Upgrading OS/VS COBOL source programs 63

If you have programs that rely on 'falling through the end' into another
program, change the code to a CALL interface to the other program.

Index names
OS/VS COBOL allowed the use of qualified index names.

Enterprise COBOL does not allow qualified index names; index names
must be unique if referenced.

LABEL RECORD IS statement
OS/VS COBOL accepted a LABEL RECORD clause without the word
RECORD. You could have LABEL IS OMITTED instead of LABEL
RECORD IS OMITTED.

Enterprise COBOL does not accept such a LABEL RECORD clause.

MOVE statement - binary value and DISPLAY value
Although the Enterprise COBOL TRUNC(OPT) compiler option is
recommended for compatibility with the OS/VS COBOL NOTRUNC
compiler option, you might receive different results involving moves of
fullword binary items (USAGE COMP with Picture 9(5) through Picture
9(9)).

For example:
WORKING-STORAGE SECTION.

01 WK1 USAGE COMP-4 PIC S9(9).

PROCEDURE DIVISION.

MOVE 1234567890 to WK1
DISPLAY WK1.
GOBACK.

This example actually shows COBOL coding that is not valid, since 10
digits are being moved into a 9-digit item.

For example, the results are as follows when compiled with the following
compiler options:

OS/VS COBOL NOTRUNC Enterprise COBOL TRUNC(OPT)

Binary value x'499602D2' x'0DFB38D2'

DISPLAY value 234567890 234567890

For OS/VS COBOL, the binary value contained in the binary data item is
not the same as the DISPLAY value. The DISPLAY value is based on the
number of digits in the PICTURE clause and the binary value is based on
the size of the binary data item, in this case, 4 bytes. The actual value of
the binary data item in decimal digits is 1234567890.

For Enterprise COBOL, the binary value and the DISPLAY value are equal
because the truncation that occurred was based on the number of digits in
the PICTURE clause.

This situation is flagged by MIGR in OS/VS COBOL and by Enterprise
COBOL when compiled with TRUNC(OPT).

MOVE CORRESPONDING statement

v OS/VS COBOL allowed more than one receiver with MOVE
CORRESPONDING; Enterprise COBOL does not. Therefore, you must
change the following OS/VS COBOL statement:
MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-B GROUP-ITEM-C

64 Enterprise COBOL for z/OS, V5.2 Migration Guide

to two Enterprise COBOL MOVE CORRESPONDING statements:
MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-B
MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-C

v Releases prior to Release 2.4 of OS/VS COBOL accepted nonunique
subordinate data items in the receiver of a MOVE CORRESPONDING
statement; Enterprise COBOL does not. For example:
01 KANCFUNC.

03 CL PIC XX.
03 KX9 PIC XX.
03 CC PIC XX.

01 HEAD1-AREA.
03 CL PIC XX.
03 KX9 PIC XX.
03 CC PIC XX.
03 KX9 PIC XX.

.

.

.
MOVE CORR KANCFUNC to HEAD1-AREA.

For Enterprise COBOL, change the data items in the receiver to have
unique names.

MOVE statement - multiple TO specification
OS/VS COBOL allowed the reserved word TO to precede each receiver in
a MOVE statement. For example:
MOVE aa TO bb TO cc

In Enterprise COBOL, the above statement must be changed to:
MOVE aa TO bb cc

MOVE ALL - TO PIC 99
OS/VS COBOL allowed group moves into a fixed numeric receiving field.
For example:
MOVE ALL ’ ’ TO num1

where, num1 is PIC 99.

Enterprise COBOL does not allow the above case. In Enterprise COBOL,
you can change the example to the following statement and it would be
accepted:
MOVE ALL ’ ’ TO num1(1:)

MOVE statement - warning message for numeric truncation
OS/VS COBOL issued a warning message for a MOVE statement with a
numeric receiver that would result in a loss of digits. For example:
77 A PIC 999.
77 B PIC 99.
.
.
.

MOVE A TO B.

You can get the same behavior with Enterprise COBOL if the compiler
option DIAGTRUNC is in effect.

OCCURS clause
OS/VS COBOL allowed a nonstandard order for phrases following the
OCCURS clause; Enterprise COBOL does not.

Chapter 5. Upgrading OS/VS COBOL source programs 65

For example, the following code sequence would be allowed in OS/VS
COBOL:
01 D PIC 999.
01 A.

02 B OCCURS 1 TO 200 TIMES
ASCENDING KEY C
DEPENDING ON D
INDEXED BY H.

02 C PIC 99.

In Enterprise COBOL, the above example must be changed to the
following code sequence:
01 D PIC 999.
01 A.

02 B OCCURS 1 TO 200 TIMES
DEPENDING ON D
ASCENDING KEY C
INDEXED BY H.

02 C PIC 99.

OPEN REVERSED statement
OS/VS COBOL accepted the REVERSED phrase for multireel files;
Enterprise COBOL does not.

PERFORM statement - second UNTIL
OS/VS COBOL allowed a second UNTIL in a PERFORM statement, as in
the following example:
PERFORM CHECK-FOR-MATCH THRU CHECK-FOR-MATCH-EXIT

UNTIL PARM-COUNT = 7
OR UNTIL SSREJADV-EOF.

Enterprise COBOL does not allow a second UNTIL statement. It must be
removed as shown in the following example:
PERFORM CHECK-FOR-MATCH THRU CHECK-FOR-MATCH-EXIT

UNTIL PARM-COUNT = 7
OR SSREJADV-EOF.

Periods in Area A
OS/VS COBOL allowed you to code a period in Area A following an
Area-A item (or no item) that was not valid. With Enterprise COBOL, a
period in Area A must be preceded by a valid Area-A item.

Periods, consecutive in any division
OS/VS COBOL allowed you to code two consecutive periods in any
division.

Enterprise COBOL issues a warning message (RC = 4) if two periods in a
row are found in the PROCEDURE DIVISION, and a severe message (RC
= 12) if two periods in a row are found in either the ENVIRONMENT
DIVISION or the DATA DIVISION.

The following code would be accepted by OS/VS COBOL, but would
receive a severe (RC = 12) error and a warning (RC = 4) under Enterprise
COBOL:
WORKING-STORAGE SECTION.
01 A PIC 9..
.
.
.

MOVE 1 TO A..
.
.

GOBACK.

66 Enterprise COBOL for z/OS, V5.2 Migration Guide

Periods missing at the end of SD, FD, or RD
A period is required at the end of a sort, file, or report description,
preceding the 01-level indicator.

OS/VS COBOL diagnosed the missing period with a warning message (RC
= 4).

Enterprise COBOL issues an error message (RC = 8).

Periods missing on paragraphs
Releases prior to Release 2.4 of OS/VS COBOL accepted paragraph names
not followed by a period. Release 2.4 of OS/VS COBOL issued a warning
message (RC = 4) whereas Enterprise COBOL issues an error message (RC
= 8) .

PICTURE string
OS/VS COBOL accepted a PICTURE string with all Z's to the left of the
implied decimal point, a Z immediately to the right of the implied decimal
point, but ending with a 9 or 9-. For example:
05 WEIRD-NUMERIC-EDITED PIC Z(11)VZ9.

Enterprise COBOL does not accept statements such as the statements in the
example above. You must change the Z9 to either ZZ or 99.

PROGRAM-ID names, nonunique
OS/VS COBOL allowed a data-name or paragraph-name to be the same as
the PROGRAM-ID name. Enterprise COBOL requires the PROGRAM-ID
name to be unique.

Qualification - using the same phrase repeatedly
A of B of B

OS/VS COBOL allowed repeating of phrases; Enterprise COBOL does not.

READ statement - redefined record keys in the KEY phrase
OS/VS COBOL accepted implicitly or explicitly redefined record keys in
the KEY phrase of the READ statement.

Enterprise COBOL accepts only the names of the data items that are
specified as record keys in the SELECT clause for the file being read.

RECORD CONTAINS n CHARACTERS clause
In variation with the 74 COBOL Standard, the RECORD CONTAINS n
CHARACTERS clause of an OS/VS COBOL program was overridden if an
OCCURS DEPENDING ON clause was specified in the FD, and produced
a file containing variable-length records instead of fixed-length records.

Under Enterprise COBOL, the RECORD CONTAINS n CHARACTERS
clause produces a file containing fixed-length records.

RECORD KEY phrase and ALTERNATE RECORD KEY phrase
OS/VS COBOL allowed the leftmost character position of the ALTERNATE
RECORD KEY data-name-4 to be the same as the leftmost character position
of the RECORD KEY or of any other ALTERNATE RECORD KEY phrases.

Enterprise COBOL does not allow this.

Record length, obtaining from QSAM RDW
In OS/VS COBOL, you can obtain the record length for files that have
variable-length records from the RDW by using invalid negative subscripts.

In Enterprise COBOL, the RDW for variable files in the area preceding the
record content is not available. To migrate from previous COBOL products,

Chapter 5. Upgrading OS/VS COBOL source programs 67

use the Format 3 RECORD clause in FD entries to set or obtain the length
of variable records when the information is not in the record itself. The
syntax contains RECORD IS VARYING DEPENDING ON data-name-1.
data-name-1 is defined in WORKING-STORAGE. After the compiler reads a
variable record, the length of the data read is automatically stored at
data-name-1. For example:
FILE SECTION.
FD THE-FILE RECORD IS VARYING DEPENDING ON REC-LENGTH.
01 THE-RECORD PICTURE X(5000) .
WORKING-STORAGE SECTION.
01 REC-LENGTH PICTURE 9(5) COMPUTATIONAL.
01 SAVED-RECORD PICTURE X(5000).
PROCEDURE DIVISION.
* Read a record of unknown length.

READ THE-FILE.
DISPLAY REC-LENGTH.

* or use REC-LENGTH to access the right amount of data:
MOVE THE-RECORD (1:REC-LENGTH) TO SAVED-RECORD.

For more information about the RECORD clause, see the Enterprise COBOL
Language Reference.

REDEFINES clause in SD or FD entries
Releases prior to OS/VS COBOL Release 2.4 accepted a REDEFINES clause
in a level-01 SD or FD; Enterprise COBOL and OS/VS COBOL Release 2.4
do not.

For example, the following code sequence is not valid:
SD ...
01 SORT-REC-HEADER.

05 SORT-KEY PIC X(20).
05 SORT-HEADER-INFO PIC X(40).
05 FILLER PIC X(20).

01 SORT-REC-DETAIL REDEFINES SORT-REC-HEADER.
05 FILLER PIC X(20).
05 SORT-DETAIL-INFO PIC X(60).

To get similar function in Enterprise COBOL, delete the REDEFINES
clause.

REDEFINES clause with tables
OS/VS COBOL allowed you to specify tables within the REDEFINES
clause. For example, OS/VS COBOL would issue a warning message (RC =
4) for the following example:
01 E.

03 F OCCURS 10.
05 G PIC X.

03 I REDEFINES F PIC X.

Enterprise COBOL does not allow tables to be redefined, and issues a
severe (RC = 12) message for the example above.

Relation conditions
Releases prior to OS/VS COBOL Release 2.4 accepted operators in relation
conditions that are not valid. The following table lists the operators
accepted by OS/VS COBOL Release 2.3 that are not accepted by Enterprise
COBOL. It also shows the valid coding for Enterprise COBOL programs.

OS/VS COBOL R2.3 Enterprise COBOL

= TO = or EQUAL TO

68 Enterprise COBOL for z/OS, V5.2 Migration Guide

OS/VS COBOL R2.3 Enterprise COBOL

> THAN > or GREATER THAN

< THAN < or LESS THAN

RENAMES clause - nonunique, nonqualified data names
No MIGR message is issued if the RENAMES clause in your OS/VS
COBOL program references a nonunique, nonqualified data name.
However, Enterprise COBOL does not support the use of nonunique,
nonqualified data names.

SELECT statement without a corresponding FD
OS/VS COBOL accepted a SELECT statement that does not have a
corresponding FD entry; Enterprise COBOL does not.

SORT verb
At early maintenance levels, the OS/VS COBOL compiler accepted the
UNTIL and TIMES phrases in the SORT verb, for example:
SORT FILE-1
ON ASCENDING KEY AKEY-1
INPUT PROCEDURE IPROC-1
OUTPUT PROCEDURE OPROC-1
UNTIL AKEY-1 = 99.

SORT FILE-2
ON ASCENDING KEY AKEY-2
INPUT PROCEDURE IPROC-2
OUTPUT PROCEDURE OPROC-2
10 TIMES.

Enterprise COBOL does not accept statements such as the statements in the
example above.

In a SORT statement, the correct syntax allows ASCENDING KEY or
DESCENDING KEY followed by a data-name which is the sort key. The
word KEY is optional.

OS/VS COBOL accepted IS if used following ASCENDING KEY.
Enterprise COBOL does not accept IS in this context. For example:
SORT SORT-FILE

ASCENDING KEY IS SD-NAME-FIELD
USING INPUT-FILE
GIVING SORTED-FILE.

SORT or MERGE
With OS/VS COBOL, a MOVE to the SD buffer before the first RETURN in
a SORT or MERGE output PROCEDURE did not overlay the data of the
first record.

In Enterprise COBOL such a MOVE would overlay the data of the first
record. During a SORT or MERGE operation, the SD data item is used. You
must not use it in the OUTPUT PROCEDURE before the first RETURN
statement executes. If data is moved into this record area before the first
RETURN statement, the first record to be returned will be overwritten.

STRING statement - sending field identifier
OS/VS COBOL allowed a numeric sending field identifier that is not an
integer. Under Enterprise COBOL, a numeric sending field identifier must
be an integer.

Chapter 5. Upgrading OS/VS COBOL source programs 69

UNSTRING statement - coding with 'OR', 'IS', or a numeric edited item
OS/VS COBOL would not issue a diagnostic error message for UNSTRING
statements containing any of the following instances of coding that is not
valid:
1. Lack of the required word “OR” between literal-1 and literal-2, as in:

UNSTRING A-FIELD DELIMITED BY ’-’ ’,’
INTO RECV-FIELD-1
POINTER PTR-FIELD.

2. Presence of the extraneous word “IS” in specifying a pointer, as in:
UNSTRING A-FIELD DELIMITED BY ’-’ OR ’,’

INTO RECV-FIELD-2
POINTER IS PTR-FIELD.

3. Use of a numeric edited item as the source of an UNSTRING statement,
as in:
01 NUM-ED-ITEM PIC $$9.99+
.
.
.

UNSTRING NUM-ED-ITEM DELIMITED BY ’$’
INTO RECV-FIELD-1
POINTER PTR-FIELD

Enterprise COBOL allows only nonnumeric data items as senders in the
UNSTRING statement.

Enterprise COBOL issues a message if an UNSTRING statement containing
any of these errors is encountered.

UNSTRING statement - multiple INTO phrases
OS/VS COBOL issued a warning (RC = 4) message when multiple INTO
phrases were coded. For example:
UNSTRING ID-SEND DELIMITED BY ALL "*"

INTO ID-R1 DELIMITER IN ID-D1 COUNT IN ID-C1
INTO ID-R2 DELIMITER IN ID-D2 COUNT IN ID-C2
INTO ID-R2 DELIMITER IN ID-D3 COUNT IN ID-C3

Enterprise COBOL does not allow multiple INTO phrases in an
UNSTRING statement.

VALUE clause - signed value in relation to the PICTURE clause
In OS/VS COBOL, the VALUE clause literal could be signed if the
PICTURE clause was unsigned.

In Enterprise COBOL, the VALUE clause literal must match the PICTURE
clause and the sign must be removed.

Language elements that changed from OS/VS COBOL
Several OS/VS COBOL language elements are changed in Enterprise COBOL in
order to conform to 85 COBOL Standard.

For some elements, the syntax of the language is different. For others, the language
syntax is unchanged, but the execution results can be different because semantics
changed.

For each element listed, there is a brief description pointing out the differences in
results and what actions to take. Clarifying coding examples are also given as
needed.

70 Enterprise COBOL for z/OS, V5.2 Migration Guide

ALPHABETIC class changes
In OS/VS COBOL, only uppercase letters and the space character were
considered to be ALPHABETIC.

In Enterprise COBOL, uppercase letters, lowercase letters, and the space
character are considered to be ALPHABETIC.

If your OS/VS COBOL program uses the ALPHABETIC class test, and the
data tested consists of mixed uppercase and lowercase letters, there can be
differences in execution results. In such cases, you can ensure identical
results by substituting the Enterprise COBOL ALPHABETIC-UPPER class
test for the OS/VS COBOL ALPHABETIC test.

ALPHABET-NAME clause changes: ALPHABET keyword
In OS/VS COBOL, the keyword ALPHABET was not allowed in the
ALPHABET-NAMES clause.

In Enterprise COBOL, there is a keyword ALPHABET and it is required.

Arithmetic statement changes
Enterprise COBOL supports the following arithmetic items with enhanced
accuracy:
v Use of floating-point data items
v Use of floating-point literals
v Use of fractional exponentiation

Therefore, for arithmetic statements that contain these items, Enterprise
COBOL might provide more accurate results than OS/VS COBOL. You will
need to test your applications to verify that these changes do not have a
negative impact on them.

ASSIGN clause changes
Enterprise COBOL supports only the following format of the ASSIGN
clause:
ASSIGN TO assignment-name

Where assignment-name can have the following forms:

QSAM files
[comments-][S-]name

VSAM sequential files
[comments-][AS-]name

VSAM indexed or relative files
[comments-]name

LINE SEQUENTIAL files
[comments-]name

If your OS/VS COBOL program uses other formats of the ASSIGN clause,
or other forms of the assignment-name, you must change it to conform to
the format supported by Enterprise COBOL.

B symbol in PICTURE clause: changes in evaluation
OS/VS COBOL accepted the PICTURE symbols A and B in definitions for
alphabetic items.

Enterprise COBOL accepts only the PICTURE symbol A. (A PICTURE that
contains both symbols A and B defines an alphanumeric edited item.)

This change can cause execution differences between OS/VS COBOL and
Enterprise COBOL for evaluations of the:

Chapter 5. Upgrading OS/VS COBOL source programs 71

v CANCEL statement
v CALL statement
v Class test
v STRING statement

CALL statement changes
OS/VS COBOL accepted paragraph names, section names, and file names
in the USING phrase of the CALL statement.

Enterprise COBOL CALL statements do not accept procedure names and
accept only QSAM file names in the USING phrase. Therefore, you must
remove the procedure names and make sure that file names used in the
USING phrase of the CALL statement name QSAM physical sequential
files.

To convert OS/VS COBOL programs that call assembler programs and
pass procedure names, you need to rewrite the assembler routines. In
OS/VS COBOL programs, assembler routines can be written to receive an
address or a list of addresses from the paragraph name that was passed as
a parameter. The assembler routines can then use this address to return to
an alternative place in the main program, if an error occurs.

In Enterprise COBOL, code your assembler routines so that they return to
the point of origin with an assigned number. If an error occurs in the
assembler program, this number can then be used to go to alternative
places in the calling routine.

For example, this assembler routine in OS/VS COBOL is not valid in
Enterprise COBOL :
CALL "ASMMOD" USING PARAMETER-1,

PARAGRAPH-1,
PARAGRAPH-2,

NEXT STATEMENT.
. . .
PARAGRAPH-1.
. . .
PARAGRAPH-2.

The sample code above should be rewritten as shown in the following
example in order to compile with Enterprise COBOL:
CALL "ASMMOD" USING PARAMETER-1,

PARAMETER-2.
IF PARAMETER-2 NOT = 0

GOTO PARAGRAPH-1,
PARAGRAPH-2,
DEPENDING ON PARAMETER-2.

In this example, you would modify the assembler program (ASMMOD) so
that it does not branch to an alternative location. Instead, it will pass back
the number zero to the calling routine if there are no errors, and a nonzero
return value if an error occurred. The nonzero value would be used to
determine which paragraph in the COBOL program would handle the
error condition.

Many COBOL programmers code assembler programs that use the 390
SPIE mechanism to get control when there is an error or condition. These
routines can pass control to a COBOL program at a paragraph whose name
was passed to the SPIE routine. Applications that use these user-written
SPIE routines should be converted to use Language Environment condition
handling.

72 Enterprise COBOL for z/OS, V5.2 Migration Guide

Combined abbreviated relation condition changes
Three considerations affect combined abbreviated relation conditions:
v NOT and logical operator/relational operator evaluation
v Parenthesis evaluation
v Optional word IS

All are described in the following sections.

NOT and logical operator/relational operator evaluation: OS/VS COBOL
with LANGLVL(1) accepted the use of NOT in combined abbreviated
relation conditions as follows:
v When only the subject of the relation condition is implied, NOT is

considered a logical operator. For example:
A = B AND NOT LESS THAN C OR D

is equivalent to:
((A = B) AND NOT (A < C) OR (A < D))

v When both the subject and the relational operator are implied, NOT is
considered to be part of the relational operator.
For example:
A > B AND NOT C

is equivalent to:
A > B AND A NOT > C

OS/VS COBOL with LANGLVL(2) and Enterprise COBOL in combined
abbreviated relation conditions consider NOT to be:
v Part of the relational operator in the forms NOT GREATER THAN, NOT

>, NOT LESS THAN, NOT <, NOT EQUAL TO, and NOT =. For
example:
A = B AND NOT LESS THAN C OR D

is equivalent to:
((A = B) AND (A NOT < C) OR (A NOT < D))

v NOT in any other position is considered to be a logical operator (and
thus results in a negated relation condition). For example:
A > B AND NOT C

is equivalent to:
A > B AND NOT A > C

To ensure that you get the execution results that you want when moving
from OS/VS COBOL with LANGLVL(1), you should expand all
abbreviated combined conditions to their full unabbreviated forms.

Parenthesis evaluation: OS/VS COBOL accepted the use of parentheses
within an abbreviated combined relational condition.

Enterprise COBOL supports most parentheses usage as IBM extensions.
However, there are some differences:
v Within the scope of an abbreviated combined relation condition,

Enterprise COBOL does not support relational operators inside
parentheses. For example:
A = B AND (< C OR D)

Chapter 5. Upgrading OS/VS COBOL source programs 73

v Some incorrect usages of parentheses in relation conditions were
accepted by OS/VS COBOL, but are not accepted by Enterprise COBOL.
For example:
(A = 0 AND B) = 0

Optional word IS: OS/VS COBOL accepted the optional word IS
immediately preceding objects within an abbreviated combined relation
condition. For example:
A = B OR IS C AND IS D

Enterprise COBOL does not accept this use of the optional word IS. In
Enterprise COBOL, delete the word IS when used in this manner.

Enterprise COBOL does permit the use of the optional word IS as part of
the relational operator in abbreviated combined relational conditions. For
example:
A = B OR IS = C AND IS = D

COPY statement with associated names
OS/VS COBOL with LANGLVL(1) allowed COPY statements to be
preceded by an 01-level indicator, which would result in the 01-level name
replacing the 01-level name in the COPY member. For example, with the
following contents of COPY member MBR-A:
01 RECORD-A.

05 FIELD-A...
05 FIELD-B...

and a COPY statement like this:
01 RECORD1 COPY MBR-A.

the resultant source would look like this:
01 RECORD1.

05 FIELD-A...
05 FIELD-B...

Enterprise COBOL does not accept this COPY statement. To compile with
Enterprise COBOL, use the following statement:
01 RECORD1.

COPY MBR-A REPLACING ==01 RECORD-A.== BY == ==.

CURRENCY-SIGN clause changes: '/', '=', and 'L' characters
OS/VS COBOL with LANGLVL(1), accepted the '/' (slash) character, the 'L'
character, and the '=' (equal) sign in the CURRENCY-SIGN clause.

Enterprise COBOL does not accept these characters as valid.

If these characters are present, you must remove them from the
CURRENCY SIGN clause.

Dynamic CALL statements to ENTRY points
OS/VS COBOL allowed dynamic CALL statements to alternate entry
points of subprograms without an intervening CANCEL, in some cases.

Enterprise COBOL always requires an intervening CANCEL. When
converting these programs, add an intervening CANCEL between dynamic
CALL statements referencing alternate ENTRY points of subprograms.

EXIT PROGRAM/GOBACK statement changes
In OS/VS COBOL, when an EXIT PROGRAM or GOBACK statement was
executed, if the end of range of a PERFORM statement within it had not
been reached, the PERFORM statement remained in its uncompleted state.

74 Enterprise COBOL for z/OS, V5.2 Migration Guide

In Enterprise COBOL, when an EXIT PROGRAM or GOBACK statement is
executed, the end of range of every PERFORM statement within it is
considered to have been reached.

FILE STATUS clause changes
In Enterprise COBOL, status key values have been changed from those
received from OS/VS COBOL:
v For QSAM files, see Table 10.
v For VSAM files, see Table 11 on page 76.

If your OS/VS COBOL program uses status key values to determine the
course of execution, you must modify the program to use the new status
key values. For complete information about Enterprise COBOL file status
codes, see the Enterprise COBOL Language Reference.

Table 10. Status key values: QSAM files

OS/VS
Enterprise
COBOL Meaning

(undefined) 04 Wrong length record; successful completion

(undefined) 05 Optional file not available; successful completion

(undefined) 07 NO REWIND/REEL/UNIT/FOR REMOVAL
specified for OPEN or CLOSE, but file not on a
reel/unit medium; successful completion

00 00 Successful completion

10 10 At END (no next logical record); successful
completion

30 30 Permanent error

34 34 Permanent error file boundary violation

90 90 Other errors with no further information

90 35 Nonoptional file not available

90 37 Device type conflict

90 39 Conflict of fixed file attributes; OPEN fails

90 96 No file identification (no DD statement for the file)

92 38 OPEN attempted for file closed WITH LOCK

92 41 OPEN attempted for a file in OPEN mode

92 42 CLOSE attempted for a file not in OPEN mode

92 43 REWRITE attempted when last I/O statement was
not READ

92 44 Attempt to rewrite a sequential file record with a
record of a different size

92 46 Sequential READ attempted with no valid next
record

92 47 READ attempted when file not in OPEN INPUT or
I-O mode

92 48 WRITE attempted when file not in OPEN OUTPUT,
I-O, or EXTEND mode

00 48 WRITE attempted when file in OPEN I-O mode

92 49 DELETE or REWRITE attempted when file not in
OPEN I-O mode

Chapter 5. Upgrading OS/VS COBOL source programs 75

Table 10. Status key values: QSAM files (continued)

OS/VS
Enterprise
COBOL Meaning

92 92 Logic error

Table 11. Status key values: VSAM files

OS/VS Enterprise COBOL Meaning

(undefined) 14 On sequential READ for relative file, size of
relative record number too large for relative key

00 00 Successful completion

00 04 Wrong length record; successful completion

00 05 Optional file not available; successful completion

00 35 Nonoptional file not available. Can occur when the
file is empty.

02 02 Duplicate key, and DUPLICATES specified;
successful completion

10 10 At END (no next logical record); successful
completion

21 21 Key not valid for a VSAM indexed or relative file;
sequence error

22 22 Key not valid for a VSAM indexed or relative file;
duplicate key and duplicates not allowed

23 23 Key not valid for a VSAM indexed or relative file;
no record found

24 24 Key not valid for a VSAM indexed or relative file;
attempt to write beyond file boundaries

Enterprise COBOL: for a WRITE to a relative file,
size of relative record number too large for relative
key

30 30 Permanent error

90 37 Attempt to open a file not on a mass storage
device

90 90 Other errors with no further information

91 91 VSAM password failure

92 41 OPEN attempted for a file in OPEN mode

92 42 CLOSE attempted for a file not in OPEN mode

92 43 REWRITE attempted when last I/O statement was
not READ or DELETE

92 47 READ attempted when file not in OPEN INPUT or
I-O mode

92 48 WRITE attempted when file not in OPEN
OUTPUT, I-O, or EXTEND mode

92 49 DELETE or REWRITE attempted when file not in
OPEN I-O mode

93 93 VSAM resource not available

93 96 35 Nonoptional file not available

76 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 11. Status key values: VSAM files (continued)

OS/VS Enterprise COBOL Meaning

94 46 Sequential READ attempted with no valid next
record

95 39 Conflict of fixed file attributes; OPEN fails

95 95 Not valid or incomplete VSAM file information

96 96 No file identification (no DD statement for this
VSAM file)

97 97 (when
VSAMOPENFS(COMPAT),
the default, is in effect)

OPEN statement execution successful; file integrity
verified

00 (when
VSAMOPENFS(SUCC) is
in effect)

OPEN statement execution successful; file integrity
verified

IF . . . OTHERWISE statement changes
OS/VS COBOL allowed IF statements of the nonstandard format:
IF condition THEN statement-1 OTHERWISE statement-2

Enterprise COBOL allows only IF statements having the standard format:
IF condition THEN statement-1 ELSE statement-2

Therefore, OS/VS COBOL programs containing nonstandard IF . . .
OTHERWISE statements must be changed to standard IF . . . ELSE
statements.

JUSTIFIED clause changes
Under OS/VS COBOL with LANGLVL(1), if a JUSTIFIED clause is
specified together with a VALUE clause for a data description entry, the
initial data is right-justified. For example:
77 DATA-1 PIC X(9) JUSTIFIED VALUE "FIRST".

results in "FIRST" occupying the five rightmost character positions of
DATA-1:
bbbbFIRST

In Enterprise COBOL, the JUSTIFIED clause does not affect the initial
placement of the data within the data item. If a VALUE and JUSTIFIED
clause are both specified for an alphabetic or alphanumeric item, the initial
value is left-justified within the data item. For example:
77 DATA-1 PIC X(9) JUSTIFIED VALUE "FIRST".

results in "FIRST" occupying the five leftmost character positions of
DATA-1:
FIRSTbbbb

To achieve unchanged results in Enterprise COBOL, you can specify the
literal value as occupying all nine character positions of DATA-1. For
example:
77 DATA-1 PIC X(9) JUSTIFIED VALUE " FIRST".

which right-justifies the value in DATA-1:
bbbbFIRST

Chapter 5. Upgrading OS/VS COBOL source programs 77

||
|
|

|
|

|
|
|

|
|

MOVE statements and comparisons: scaling changes
In OS/VS COBOL with LANGLVL(1), if either the sending field in a
MOVE statement or a field in a comparison is a scaled integer (that is, if
the rightmost PICTURE symbols are the letter P) and the receiving field (or
the field to be compared) is alphanumeric or numeric-edited, the trailing
zeros (0) are truncated.

For example, after the following MOVE statement is executed:
05 SEND-FIELD PICTURE 999PPP VALUE 123000.
05 RECEIVE-FIELD PICTURE XXXXXX.

. . .
MOVE SEND-FIELD TO RECEIVE-FIELD.

RECEIVE-FIELD contains the value 123bbb (left-justified), where 'b'
represents a blank.

With Enterprise COBOL, a MOVE statement transfers the trailing zeros,
and a comparison includes them.

For example, after the following MOVE statement is executed:
05 SEND-FIELD PICTURE 999PPP VALUE 123000.
05 RECEIVE-FIELD PICTURE XXXXXX.

. . .
MOVE SEND-FIELD TO RECEIVE-FIELD.

RECEIVE-FIELD contains the value 123000.

Numeric class test on group items
OS/VS COBOL allowed the IF NUMERIC class test to be used with group
items that contained one or more signed elementary items.

For example, IF grp1 IS NUMERIC, when grp1 is a group item:
01 grp1.

03 yy PIC S99.
03 mm PIC S99.
03 dd PIC S99.

Enterprise COBOL issues an S-level message when the IF NUMERIC class
test is used for GROUP items whose subordinates are signed.

Numeric data changes
Enterprise COBOL uses the NUMPROC compiler option to alter the code
generated for decimal data. While NUMPROC(NOPFD) will cause
processing more similar to OS/VS COBOL than NUMPROC(PFD), results
are not the same in all cases. The results of MOVE statements,
comparisons, and arithmetic statements might differ from OS/VS COBOL,
particularly when the fields have not been initialized.

Programs that rely on data exceptions to either identify contents of decimal
data items that are not valid or to terminate abnormally might need to be
changed to use the class test to validate data in decimal data items.

OCCURS DEPENDING ON clause: ASCENDING and DESCENDING KEY
phrase

OS/VS COBOL accepted a variable-length key in the ASCENDING and
DESCENDING KEY phrases of the OCCURS DEPENDING ON clauses as
an IBM extension.

In Enterprise COBOL, you cannot specify a variable-length key in the
ASCENDING or DESCENDING KEY phrase.

78 Enterprise COBOL for z/OS, V5.2 Migration Guide

OCCURS DEPENDING ON clause: value for receiving items changed
In OS/VS COBOL, the current value of the OCCURS DEPENDING ON
(ODO) object is always used for both sending and receiving items.

In Enterprise COBOL, for sending items, the current value of the ODO
object is used. For receiving items:
v If a group item contains both the subject and object of an ODO, and is

not followed in the same record by a nonsubordinate data item, the
maximum length of the item is used.

v If a group item contains both the subject and object of an ODO and is
followed in the same record by a nonsubordinate data item, the actual
length of the receiving item is used.

v If a group item contains the subject, but not the object of an ODO, the
actual length of the item is used.

When the maximum length is used, it is not necessary to initialize the
ODO object before the table receives data. For items whose location
depends on the value of the ODO object, you need to set the object of the
OCCURS DEPENDING ON clause before using them in the using phrase
of a CALL statement. Under Enterprise COBOL, for any variable-length
group that is not variably located, you do not need to set the object for the
item when it is used in the USING BY REFERENCE phrase of the CALL
statement. This is true even if the group is described by the second bullet
above.

For example:
01 TABLE-GROUP-1

05 ODO-KEY-1 PIC 99.
05 TABLE-1 PIC X(9)

OCCURS 1 TO 50 TIMES DEPENDING ON ODO-KEY-1.
01 ANOTHER-GROUP.

05 TABLE-GROUP-2.
10 ODO-KEY-2 PIC 99.
10 TABLE-2 PIC X(9)

OCCURS 1 to 50 TIMES DEPENDING ON ODO-KEY-2.
05 VARIABLY-LOCATED-ITEM PIC X(200).
. . .

PROCEDURE DIVISION.
. . .
MOVE SEND-ITEM-1 TO TABLE-GROUP-1
. . .
MOVE ODO-KEY-X TO ODO-KEY-2
MOVE SEND-ITEM-2 TO TABLE-GROUP-2.

When TABLE-GROUP-1 is a receiving item, Enterprise COBOL moves the
maximum number of character positions for it (450 bytes for TABLE-1 plus
two bytes for ODO-KEY-1). Therefore, you need not initialize the length of
TABLE-1 before moving the SEND-ITEM-1 data into the table.

However, a nonsubordinate VARIABLY-LOCATED-ITEM follows
TABLE-GROUP-2 in the record description. In this case, Enterprise COBOL
uses the actual value in ODO-KEY-2 to calculate the length of
TABLE-GROUP-2, and you must set ODO-KEY-2 to its valid current length
before moving the SEND-ITEM-2 data into the group receiving item.

ON SIZE ERROR phrase: changes in intermediate results
For OS/VS COBOL, the SIZE ERROR phrase for the DIVIDE and
MULTIPLY statements applied to both intermediate and final results.

For Enterprise COBOL, the SIZE ERROR phrase for the DIVIDE and
MULTIPLY statements applies only to final results. This is a change

Chapter 5. Upgrading OS/VS COBOL source programs 79

between the 74 COBOL Standard and the 85 COBOL Standard. This change
might or might not affect your programs.

Therefore, if your OS/VS COBOL program depends upon SIZE ERROR
detection for intermediate results, you might need to change it.

Optional word IS
For OS/VS COBOL programs, no MIGR message would be issued if the
optional word IS immediately preceded objects within an abbreviated
combined relation condition. For example:
A = B OR IS C AND IS D

Enterprise COBOL does not accept this use of the optional word IS. In
Enterprise COBOL, delete the word IS when used in this manner.

Enterprise COBOL does permit the use of the optional word IS as part of
the relational operator in abbreviated combined relational conditions. For
example:
A = B OR IS = C AND IS = D

PERFORM statement: changes in the VARYING/AFTER phrases
In OS/VS COBOL, in a PERFORM statement with the VARYING/AFTER
phrases, two actions take place when an inner condition tests as TRUE:
1. The identifier/index associated with the inner condition is set to its

current FROM value.
2. The identifier/index associated with the outer condition is augmented

by its current BY value.

In Enterprise COBOL in such a PERFORM statement, the following results
take place when an inner condition tests as TRUE:
1. The identifier/index associated with the outer condition is augmented

by its current BY value.
2. The identifier/index associated with the inner condition is set to its

current FROM value.

The following example illustrates the differences in results:
PERFORM ABC VARYING X FROM 1 BY 1 UNTIL X > 3

AFTER Y FROM X BY 1 UNTIL Y > 3

In OS/VS COBOL, ABC is executed 8 times with the following values:
X: 1 1 1 2 2 2 3 3
Y: 1 2 3 1 2 3 2 3

In Enterprise COBOL, ABC is executed 6 times with the following values:
X: 1 1 1 2 2 3
Y: 1 2 3 2 3 3

By using nested PERFORM statements, you could achieve the same
processing results as in OS/VS COBOL, as follows:
MOVE 1 TO X, Y, Z
PERFORM EX-1 VARYING X FROM 1 BY 1 UNTIL X > 3
. . .
EX-1.

PERFORM ABC VARYING Y FROM Z BY 1 UNTIL Y > 3.
MOVE X TO Z.

ABC.

PROGRAM COLLATING SEQUENCE clause changes
In OS/VS COBOL, the collating sequence specified in the alphabet-name of

80 Enterprise COBOL for z/OS, V5.2 Migration Guide

the PROGRAM COLLATING SEQUENCE clause is applied to comparisons
implicitly performed during execution of INSPECT, STRING, and
UNSTRING statements.

In Enterprise COBOL, the collating sequence specified in alphabet-name is
not used for these implicit comparisons.

READ and RETURN statement changes: INTO phrase
When the sending field is chosen for the move associated with a READ or
RETURN . . . INTO identifier statement, OS/VS COBOL and Enterprise
COBOL can select different records from under the FD or SD to use as the
sending field. This only affects implicit elementary MOVE statements,
when the record description has a PICTURE clause.

RERUN clause changes
When the RERUN clause is specified, OS/VS COBOL takes a checkpoint
on the first record; Enterprise COBOL does not.

RESERVE clause changes
OS/VS COBOL supported the following formats of the FILE CONTROL
paragraph RESERVE clause:
RESERVE NO ALTERNATE AREA
RESERVE NO ALTERNATE AREAS
RESERVE integer ALTERNATE AREA
RESERVE integer ALTERNATE AREAS
RESERVE integer AREA
RESERVE integer AREAS

Enterprise COBOL supports only the following forms of the RESERVE
clause:
RESERVE integer AREA
RESERVE integer AREAS

If your OS/VS COBOL program uses either the RESERVE integer
ALTERNATE AREA or the RESERVE integer ALTERNATE AREAS format,
you must specify the RESERVE clause with integer + 1 areas to get
equivalent processing under Enterprise COBOL. That is, the OS/VS
COBOL phrase RESERVE 2 ALTERNATE AREAS is equivalent to RESERVE 3
AREASA in Enterprise COBOL.

Under OS/VS COBOL with LANGLVL(1), the interpretation of the
RESERVE integer AREAS format differed from the interpretation of this
format using Enterprise COBOL.

With LANGLVL(1), using the RESERVE integer AREA or RESERVE integer
AREAS format, you must specify the RESERVE clause with integer + 1
areas to get equivalent processing under Enterprise COBOL.

Reserved word list changes
Differences exist between the reserved word list for Enterprise COBOL and
OS/VS COBOL. Appendix B, “COBOL reserved word comparison,” on
page 233 contains a complete listing of reserved words.

SEARCH statement changes
In OS/VS COBOL, the ASCENDING and DESCENDING KEY data items
could be specified either as the subject or as the object of the WHEN
relation-condition of the SEARCH statement.

In Enterprise COBOL, the WHEN phrase data-name (the subject of the
WHEN relation-condition) must be an ASCENDING or a DESCENDING

Chapter 5. Upgrading OS/VS COBOL source programs 81

KEY data item in this table element, and identifier-2 (the object of the
WHEN relation-condition) must not be an ASCENDING or DESCENDING
key data item for this table element.

OS/VS COBOL accepted the following statement; Enterprise COBOL does
not:
WHEN VAL = KEY-1 (INDEX-NAME-1)

DISPLAY "TABLE RECORDS OK".

The following SEARCH example will execute under both Enterprise
COBOL andOS/VS COBOL:
01 VAL PIC X.
01 TABLE-01.

05 TABLE-ENTRY
OCCURS 100 TIMES
ASCENDING KEY IS KEY-1
INDEXED BY INDEX-NAME-1.

10 FILLER PIC X.
10 KEY-1 PIC X.

SEARCH ALL TABLE-ENTRY
AT END DISPLAY "ERROR"

WHEN KEY-1 (INDEX-NAME-1) = VAL
DISPLAY "TABLE RECORDS OK".

Segmentation changes: PERFORM statement in independent segments
In OS/VS COBOL with LANGLVL(1), if a PERFORM statement in an
independent segment refers to a permanent segment, the independent
segment is initialized upon each exit from the performed procedures.

In OS/VS COBOL with LANGLVL(2), for a PERFORM statement in an
independent segment that refers to a permanent segment, control is passed
to the performed procedures only once for each execution of the
PERFORM statement.

In Enterprise COBOL, the compiler does not perform overlay; therefore,
the rules given above do not apply.

If your program logic depends upon either of the OS/VS COBOL
implementations of these segmentation rules, you must rewrite the
program.

SELECT OPTIONAL clause changes
In OS/VS COBOL with LANGLVL(1), if the SELECT OPTIONAL clause is
specified in the file control entry, the program will fail if the file is not
available. In Enterprise COBOL, if the SELECT OPTIONAL clause is
specified in the file control entry, the program will not fail if the file is not
available and a file status code of 05 is returned. A USERMOD can
influence this behavior for VSAM. For details, see: Language Environment
Installation and Customization.

SORT special registers
The SORT-CORE-SIZE, SORT-FILE-SIZE, SORT-MESSAGE, and
SORT-MODE-SIZE special registers are supported under Enterprise
COBOL, and they will be used in the SORT interface when they have
nondefault values. However, at run time, individual SORT special registers
will be overridden by the corresponding parameters on control statements
that are included in the SORT-CONTROL file, and a message will be
issued. In addition, a compiler warning message (W-level) will be issued
for each SORT special register that was set in the program.

In OS/VS COBOL, the SORT-RETURN special register can contain codes
for successful SORT completion (RC=0), OPEN or I/O errors concerning

82 Enterprise COBOL for z/OS, V5.2 Migration Guide

the USING or GIVING files (RC=2 through RC=12), and unsuccessful
SORT completion (RC=16). In Enterprise COBOL, the SORT-RETURN
register only contains codes for successful (RC=0) and unsuccessful
(RC=16) SORT completion.

Source language debugging changes
With Enterprise COBOL and OS/VS COBOL, you can debug source
language with the USE FOR DEBUGGING declarative. Valid operands are
shown in Table 12. Operands that are not valid in Enterprise COBOL must
be removed from the OS/VS COBOL program. Use Debug Tool to achieve
the same debugging results.

Table 12. USE FOR DEBUGGING declarative: valid operands

Debugging operands Procedures are executed
immediately:OS/VS COBOL Enterprise COBOL

procedure-name-1 procedure-name-1 Before each execution of the
named procedure.

After execution of an ALTER
statement referring to the named
procedure.

ALL PROCEDURES ALL PROCEDURES Before execution of every
nondebugging procedure in the
outermost program

After execution of every ALTER
statement in the outermost
program (except ALTER statements
in declarative procedures).

file-name-n (none) See the IBM VS COBOL for OS/VS
for a description.

ALL REFERENCES OF
identifier-n

(none) See the IBM VS COBOL for OS/VS
for a description.

cd-name-1 (none) See the IBM VS COBOL for OS/VS
for a description.

Subscripts out of range flagged at compile time
Enterprise COBOL issues an error (RC = 8) message if a literal subscript or
index value is coded that is greater than the allowed maximum, or less
than one. This message is generated whether or not the SSRANGE option
is specified.

OS/VS COBOL did not issue an equivalent error message.

UNSTRING statements: subscript evaluation changes
In the UNSTRING statements for OS/VS COBOL, any associated
subscripting, indexing, or length calculation would be evaluated
immediately before the transfer of data into the receiving item for the
DELIMITED BY, INTO, DELIMITER IN, and COUNT IN fields.

For these fields, in the Enterprise COBOL UNSTRING statement, any
associated subscripting, indexing, or length calculation is evaluated once:
immediately before the examination of the delimiter sending fields. For
example:
01 ABC PIC X(30).
01 IND.

02 IND-1 PIC 9.
01 TAB.

Chapter 5. Upgrading OS/VS COBOL source programs 83

02 TAB-1 PIC X OCCURS 10 TIMES.
01 ZZ PIC X(30).
. . .

UNSTRING ABC DELIMITED BY TAB-1 (IND-1) INTO IND ZZ.

In OS/VS COBOL, subscript IND-1 would be reevaluated before the
second receiver ZZ was filled.

In Enterprise COBOL, the subscript IND-1 is evaluated only once at the
beginning of the execution of the UNSTRING statement.

In OS/VS COBOL with LANGLVL(1), when the DELIMITED BY ALL
phrase of UNSTRING is specified, two or more contiguous occurrences of
any delimiter are treated as if they were only one occurrence. As much of
the first occurrence as will fit is moved into the current delimiter receiving
field (if specified). Each additional occurrence is moved only if the
complete occurrence will fit. For more information about the behavior of
this phrase in OS/VS COBOL, see the IBM VS COBOL for OS/VS.

In Enterprise COBOL, one or more contiguous occurrences of any
delimiters are treated as if they are only one occurrence, and this one
occurrence is moved to the delimiter receiving field (if specified).

For example, if ID-SEND contains 123**45678**90AB:
UNSTRING ID-SEND DELIMITED BY ALL "*"

INTO ID-R1 DELIMITER IN ID-D1 COUNT IN ID-C1
ID-R2 DELIMITER IN ID-D2 COUNT IN ID-C2
ID-R3 DELIMITER IN ID-D3 COUNT IN ID-C3

OS/VS COBOL with LANGLVL(1), will produce this result:
ID-R1 123 1D-D1 ** ID-C1 3
ID-R2 45678 1D-D2 ** ID-C2 5
ID-R3 90AB 1D-D3 ID-C3 4

OS/VS COBOL with LANGLVL(2) and Enterprise COBOL will produce
this result:
ID-R1 123 1D-D1 * ID-C1 3
ID-R2 45678 1D-D2 * ID-C2 5
ID-R3 90AB 1D-D3 ID-C3 4

UPSI switches
OS/VS COBOL allowed references to UPSI switches and mnemonic names
associated with UPSI. Enterprise COBOL allows condition-names only.

For example, if a condition-name is defined in the SPECIAL-NAMES
paragraph, the following code examples have the same effect:
OS/VS COBOL Enterprise COBOL

SPECIAL-NAMES. SPECIAL-NAMES.
UPSI-0 IS MNUPO UPSI-0 IS MNUPO

ON STATUS IS UPSI-0-ON
OFF STATUS IS UPSI-0-OFF

.
PROCEDURE DIVISION PROCEDURE DIVISION

.
IF UPSI-0 = 1 ... IF UPSI-0-ON ...
IF MNUPO = 0 ... IF UPSI-0-OFF ...

VALUE clause condition names
For VALUE clause condition names, releases prior to Release 2.4 of OS/VS
COBOL allowed the initialization of an alphanumeric field with a numeric
value. For example:

84 Enterprise COBOL for z/OS, V5.2 Migration Guide

01 FIELD-A.
02 LAST-YEAR PIC XX VALUE 87.
02 THIS-YEAR PIC XX VALUE 88.
02 NEXT-YEAR PIC XX VALUE 89.

Enterprise COBOL does not accept this language extension. Therefore, to
correct the above example, you should code alphanumeric values in the
VALUE clauses, as in the following example:
01 FIELD-A.

02 LAST-YEAR PIC XX VALUE "87".
02 THIS-YEAR PIC XX VALUE "88".
02 NEXT-YEAR PIC XX VALUE "89".

WHEN-COMPILED special register
Enterprise COBOL and OS/VS COBOL support the use of the
WHEN-COMPILED special register. The rules for use of the special register
are the same for both compilers. However, the format of the data differs.

In OS/VS COBOL the format is:
hh.mm.ssMMM DD, YYYY (hour.minute.secondMONTH DAY, YEAR)

In Enterprise COBOL the format is:
MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

WRITE AFTER POSITIONING statement
OS/VS COBOL supported the WRITE statement with the AFTER
POSITIONING phrase; Enterprise COBOL does not.

In Enterprise COBOL, you can use the WRITE . . . AFTER ADVANCING
statement to obtain behavior similar to WRITE . . . AFTER POSITIONING.
The following two examples show OS/VS COBOL POSITIONING phrases
and the equivalent Enterprise COBOL phrases.

When using WRITE . . . AFTER ADVANCING with literals:
OS/VS COBOL Enterprise COBOL

AFTER POSITIONING 0 AFTER ADVANCING PAGE
AFTER POSITIONING 1 AFTER ADVANCING 1 LINE
AFTER POSITIONING 2 AFTER ADVANCING 2 LINES
AFTER POSITIONING 3 AFTER ADVANCING 3 LINES

When using WRITE...AFTER ADVANCING with nonliterals:
WRITE OUTPUT-REC AFTER POSITIONING SKIP-CC.

OS/VS COBOL Enterprise COBOL
SKIP-CC

AFTER POSITIONING SKIP-CC 1 AFTER ADVANCING PAGE
AFTER POSITIONING SKIP-CC ’ ’ AFTER ADVANCING 1 LINE
AFTER POSITIONING SKIP-CC 0 AFTER ADVANCING 2 LINES
AFTER POSITIONING SKIP-CC - AFTER ADVANCING 3 LINES

Restriction: With Enterprise COBOL, channel skipping is only supported
with references to SPECIAL-NAMES.

CCCA can automatically convert WRITE . . . AFTER POSITIONING
statements. For example, given the following statement:
WRITE OUTPUT-REC AFTER POSITIONING n.

Chapter 5. Upgrading OS/VS COBOL source programs 85

If n is a literal, CCCA would change the above example to WRITE...AFTER
ADVANCING n LINES. If n is an identifier, SPECIAL-NAMES are generated
and a section is added at the end of the program.

86 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 6. Compiling converted OS/VS COBOL programs

This section contains information about the following topics:
v Compiler options for converted programs
v Unsupported OS/VS COBOL compiler options
v Prolog format changes

Information specific to OS/VS COBOL or Enterprise COBOL is noted.

Compiler options for converted programs
Table 13 lists the compiler options that have special relevance to converted
programs.

Table 13. Compiler options for converted OS/VS COBOL programs

Compiler option Comments

BUFSIZE In OS/VS COBOL, the BUF option value specifies the total number of bytes reserved
for buffers. In Enterprise COBOL, BUFSIZE specifies the amount of buffer storage
reserved for each compiler work data set. The default is 4096.

If your OS/VS COBOL program uses the BUF option, you must adjust the amount
requested in your Enterprise COBOL BUFSIZE option.

DATA(24) Use DATA(24) for Enterprise COBOL programs that are compiled with RENT and
mixed with AMODE 24 assembler programs.

DIAGTRUNC Use DIAGTRUNC to get numeric truncation flagging for MOVE statements. This is
similar to the flagging in OS/VS COBOL.

NOSTGOPT Use NOSTGOPT if you have non-referenced data items as eye-catchers or
time/version stamps in WORKING-STORAGE. Use STGOPT only if you do not need
unused data items.

NUMPROC Use NUMPROC(NOPFD) plus the installation option NUMCLS(ALT) if you were
using the USERMOD shipped with OS/VS COBOL. With the USERMOD, characters
A, B, and E (as well as C, D, and F) are considered valid numeric signs in the
COBOL numeric class test. For other alternatives for sign representation, see the
Enterprise COBOL Programming Guide.

OUTDD(ddname) Use this option to override the default ddname (SYSOUT) for SYSOUT output that
goes to the system logic output unit. If the ddname is the same as the Language
Environment MSGFILE ddname, the output is routed to the ddname designated for
MSGFILE. If the ddname is not the same as the Language Environment MSGFILE
ddname, the output from the DISPLAY statement is directed to the OUTDD ddname
destination. If the ddname is not present at first reference, dynamic allocation will
take place with the default name and attributes that are specified by Language
Environment.

PGMNAME(COMPAT) Use PGMNAME(COMPAT) to ensure that program names are processed in a manner
compatible with OS/VS COBOL.

© Copyright IBM Corp. 1991, 2019 87

Table 13. Compiler options for converted OS/VS COBOL programs (continued)

Compiler option Comments

TRUNC TRUNC controls the way arithmetic fields are truncated into binary receiving fields
during MOVE and arithmetic operations. Use TRUNC(STD) if your shop used
TRUNC as the default with OS/VS COBOL. Use TRUNC(OPT) if your shop uses
NOTRUNC as the default with OS/VS COBOL (except for select programs that
require guaranteed nontruncation of binary data). For programs that require
nontruncation of binary data, use TRUNC(BIN), especially if there is a possibility that
data being moved into binary data items can have a value larger than that defined by
the PICTURE clause for the binary data item. For individual data items you can
specify USAGE COMP-5 to get guaranteed nontruncation of binary data.
High-order digits: Enterprise COBOL programs compiled with TRUNC(OPT) can
give different results than OS/VS COBOL programs compiled with NOTRUNC. The
main difference is that programs can lose nonzero high-order digits. For statements
for which a loss of high-order digits might take place, Enterprise COBOL issues a
diagnostic message indicating that you should ensure that at least one of the
following conditions is met:

v The sending items will not contain large numbers.

v The receiving items are defined with enough digits in the PICTURE clause to
handle the largest sending data items.

Unsupported OS/VS COBOL compiler options
Table 14 shows the OS/VS COBOL compiler options that are not supported by
Enterprise COBOL.

For a complete list of Enterprise COBOL compiler options, see Appendix E,
“Option comparison,” on page 263.

Table 14. OS/VS COBOL compiler options not supported by Enterprise COBOL

OS/VS COBOL option Enterprise COBOL equivalent

BATCH/NOBATCH Batch environment is always available (sequence of programs).
CBL statements are always processed with Enterprise COBOL.

Enterprise COBOL considerations for sequence of programs are
described in the Enterprise COBOL Programming Guide.

COUNT/NOCOUNT Similar function is available in Debug Tool.

ENDJOB/NOENDJOB ENDJOB behavior is always in effect.

LANGLVL(1/2) The LANGLVL option is not available. Enterprise COBOL
supports only 85 COBOL Standard.

LVL=A|B|C|D/ NOLVL FLAGSTD is used for FIPS flagging. ANSI COBOL 74 FIPS is not
supported.

RES/NORES The RES or NORES option is not available. With Enterprise
COBOL, the object module is always treated such that library
subroutines are located dynamically at run time, instead of being
link-edited with the COBOL program. This is equivalent to RES
behavior in OS/VS COBOL.

STATE/NOSTATE Function is available with the TEST option.

SUPMAP/NOSUPMAP Equivalent to the NOCOMPILE/COMPILE compiler option.

SYMDMP/ NOSYMDMP ABEND dumps and dynamic dumps are available through
Language Environment services. Symbolic dumps are available
through using the TEST compiler option.

SXREF/NOSXREF The XREF option provides sorted SXREF output.

88 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 14. OS/VS COBOL compiler options not supported by Enterprise COBOL (continued)

OS/VS COBOL option Enterprise COBOL equivalent

VBSUM/NOVBSUM Function is available with the VBREF compiler option.

CDECK/NOCDECK The LISTER feature is not supported.

FDECK/NOFDECK The LISTER feature is not supported.

LCOL1/LCOL2 The LISTER feature is not supported.

LSTONLY/LSTCOMP
NOLST

The LISTER feature is not supported.

L120/L132 The LISTER feature is not supported.

OSDECK With Enterprise COBOL, the object deck runs only in the z/OS
environment, not z/VM®. The OSDECK function is not
supported.

Prolog format changes
The prolog of an object program is the code that the compiler generates at the
entry point of the program. It also contains data that identifies the program.

Object modules generated by Enterprise COBOL are Language Environment
conforming, and thus have a different prolog format than with OS/VS COBOL.
You will need to update existing assembler programs that scan for date and time
to the new format.

You can compile your programs with the Enterprise COBOL LIST compiler option
to generate a listing that you can use to compare the OS/VS COBOL prolog format
with the Enterprise COBOL prolog format.

Chapter 6. Compiling converted OS/VS COBOL programs 89

90 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 7. Upgrading VS COBOL II source programs

There are differences between the VS COBOL II language and the Enterprise
COBOL language that might require that you modify your programs.

Your VS COBOL II programs will compile without change using the Enterprise
COBOL compiler unless the programs meet one or more of the following
conditions:
v Programs were compiled with the CMPR2 compiler option. Enterprise COBOL

does not support the CMPR2/NOCMPR2 compiler option.
v Programs were compiled with VS COBOL II Release 3.x, and that contain one or

more of three minor 85 COBOL Standard features that were subject to 85
COBOL Standard interpretation changes

v Programs were compiled with VS COBOL II Release 3.0 and that use ACCEPT . .
. FROM CONSOLE

v Programs use words which are now reserved in Enterprise COBOL
v Programs with undocumented VS COBOL II extensions
v Programs with SEARCH ALL statements
v Programs use the SIMVRD support
v Programs contain the format 2 declarative syntax: USE...AFTER...LABEL

PROCEDURE..., and optionally the syntax: GO TO MORE-LABELS. The support for
these were removed in Enterprise COBOL Version 5

Upgrading VS COBOL II programs compiled with the CMPR2 compiler
option

If your VS COBOL II source programs were compiled with the CMPR2 compiler
option, you must convert them to NOCMPR2 programs in order to compile them
with Enterprise COBOL. The CMPR2/NOCMPR2 compiler option is not supported
in Enterprise COBOL. Enterprise COBOL programs behave as if NOCMPR2 was
always in effect. For information about language differences between CMPR2 and
NOCMPR2 (85 COBOL Standard), see “Upgrading programs compiled with the
CMPR2 compiler option” on page 107.

For information about tools that will help with the CMPR2 to NOCMPR2
conversion, see Appendix C, “Conversion tools for source programs,” on page 249.

85 COBOL Standard interpretation changes
Some language differences exist between programs compiled with NOCMPR2 on
VS COBOL II Release 3 (including 3.0, 3.1, and 3.2) and programs compiled with
NOCMPR2 on subsequent releases (including VS COBOL II Release 4, IBM
COBOL, and Enterprise COBOL). These changes are the result of responses from
COBOL Standard Interpretation Requests that required an implementation different
from that used in VS COBOL II Release 3. Most likely you do not have these very
minor differences in your programs because of their rarity. However, the following
language elements are affected:
v REPLACE and comment lines
v Precedence of USE procedures for nested programs

© Copyright IBM Corp. 1991, 2019 91

v Reference modification of a variable-length group receiver with no length
specified

REPLACE and comment lines
This item affects the treatment of blank lines and comment lines that are displayed
in text that matches pseudo-text-1 of REPLACE statements.

Blank lines, which are interspersed in the matched text, will not be displayed in
the output of the REPLACE statement. This change could affect the semantics of
the resulting program since the line numbers could be different. (For example, if a
program uses the USE FOR DEBUGGING declarative, the contents of
DEBUG-ITEM might be different). If an Enterprise COBOL generated program
differs from the equivalent VS COBOL II program, the following message will be
issued:

IGYLI0193-I
Matched pseudo-text-1 contained blank or comment lines. Execution results
may differ from VS COBOL II Release 3.x.

Precedence of USE procedures
This difference affects the precedence of USE procedures relating to contained
programs.

In VS COBOL II Release 3.x, a file-specific USE procedure always takes precedence
over a mode-specific USE procedure. This precedence occurs if an applicable
mode-specific USE procedure exists in the current program, or if a mode-specific
USE procedure with the GLOBAL attribute in an outer program is "nearer" than
the file-specific procedure.

In VS COBOL II Release 4 and Enterprise COBOL, USE procedure precedence is
based on a program by program level; from the current program to the containing
program for that program, and so on to the outermost program.

The following message will be issued if an Enterprise COBOL generated program
selects a different USE procedure than would have been used by the VS COBOL II
Release 3.x program:

IGYSC2300-I
A mode-specific declarative may be selected for file "file-name" in program
"program-name." Execution results may differ from VS COBOL II Release
3.x.

Reference modification of a variable-length group receiver
Programs that MOVE data to reference-modified, variable-length groups might
produce different results depending on whether the length used for the
variable-length group is evaluated by using the actual length or the maximum
length.

You might see a difference if the variable-length group meets all of the following
criteria:
v If it is a receiver
v If it contains its own OCCURS DEPENDING ON object
v If it is not followed by a nonsubordinate item (also referred to as a variably

located data item)

92 Enterprise COBOL for z/OS, V5.2 Migration Guide

v If it is reference-modified and a length is not specified

For example, Group VAR-LEN-GROUP-A contains an ODO object and an OCCURS
subject and is followed by a variably located data item.
01 VAR-LEN-PARENT-A.

02 VAR-LEN-GROUP-A.
03 ODO-OBJECT PIC 99 VALUE 5.
03 OCCURS-SUBJECT OCCURS 10 TIMES DEPENDING ON ODO-OBJECT.

04 TAB-ELEM PIC X(4).
02 VAR-LOC-ITEM PIC XX.

01 NEXT-GROUP.

MOVE ALL SPACES TO VAR-LEN-GROUP-A(1:).

Group VAR-LEN-GROUP-B contains an ODO object and an OCCURS subject and is
not followed by a variably located data item. VAR-LOC-ITEM follows the OCCURS
subject, but does not follow VAR-LEN-GROUP-B.
01 VAR-LEN-PARENT-B.

02 VAR-LEN-GROUP-B.
03 ODO-OBJECT PIC 99 VALUE 5.
03 OCCURS-SUBJECT OCCURS 10 TIMES DEPENDING ON ODO-OBJECT.

04 TAB-ELEM PIC X(4).
03 VAR-LOC-ITEM PIC XX.

01 NEXT-GROUP.

MOVE ALL SPACES TO VAR-LEN-GROUP-B(1:).

In the above examples, MOVE ALL SPACES TO VAR-LEN-GROUP-A (1:) would give the
same results with any NOCMPR2 program (VS COBOL II Release 3.x, VS COBOL
II Release 4, or Enterprise COBOL). They all use the actual length in this case.

MOVE ALL SPACES TO VAR-LEN-GROUP-B (1:) would give different results for the
following programs compiled with NOCMPR2:
v VS COBOL II Release 3.x uses the actual length of the group as defined by the

current value of the ODO object (the actual length of the group is set to spaces
using the ODO object value).

v VS COBOL II Release 4 and Enterprise COBOL use the maximum length of the
group (the entire data item is set to spaces using the ODO object value).

If a program contains a reference-modified, variable-length group receiver that
contains its own ODO object and is not followed by variably located data and
whose reference modifier does not have a length specified, the following message
is issued:

IGYPS2298-I
The reference to variable-length group "data name" will be evaluated using
the maximum length of the group. Execution results might differ from VS
COBOL II Release 3.x.

ACCEPT statement
One additional difference between later releases and VS COBOL II Release 3.0
involves the system input devices for the mnemonic-name suboption of the
ACCEPT statement.

For VS COBOL II Release 3.0 only, an input record of 80 characters is assumed
even if a logical record length of other than 80 characters is specified. For VS

Chapter 7. Upgrading VS COBOL II source programs 93

COBOL II Release 3.1 through Release 4.0, an input record of 256 characters is
assumed even if a logical record length of other than 80 characters is specified.

In Enterprise COBOL, the maximum logical record length allowed is 32,760
characters.

New reserved words
Enterprise COBOL has quite a few more reserved words than VS COBOL II. If
your VS COBOL II programs use these reserved words as user-defined words, then
they must be changed before you can compile your programs with Enterprise
COBOL.

New reserved words
If your programs use any of the new reserved words as user-defined words (such
as data item names or paragraph names), then those words must be changed. You
can do something similar to what CCCA does and just add a suffix such as -85 to
all instances of the word. For example:
77 VOLATILE PIC S9(9) BINARY.
Move 0 TO VOLATILE.

To compile with Enterprise COBOL V5, change it to:
77 VOLATILE-85 PIC S9(9) BINARY.
Move 0 TO VOLATILE-85.

The new reserved words in Enterprise COBOL V5 are XML-INFORMATION and
VOLATILE.

You can use CCCA to convert the reserved words automatically. For more
information about the CCCA tool, see Appendix C, “Conversion tools for source
programs,” on page 249.

CCCA is updated for reserved word conversions for Enterprise COBOL Version 5.1
by the PTF for APAR PM86253. For Version 5.2, CCCA is updated for reserved
word conversions by the PTF for APAR PI32750.

The following table shows the reserved words added to each subsequent release of
COBOL. For a complete list of reserved words, see Appendix B, “COBOL reserved
word comparison,” on page 233.

Table 15. New reserved words, by compiler.

Compiler Reserved word

COBOL/370 V1R1 FUNCTION, PROCEDURE-POINTER

COBOL for MVS & VM V1R2 CLASS-ID, METACLASS, RECURSIVE,
END-INVOKE, METHOD, REPOSITORY,
INHERITS, METHOD-ID, RETURNING,
INVOKE, OBJECT, SELF, SUPER,
LOCAL-STORAGE, OVERRIDE

COBOL for OS/390 & VM V2R1 Same as COBOL for MVS & VM

COBOL for OS/390 & VM V2R2 COMP-5, COMPUTATIONAL-5, EXEC,
END-EXEC, SQL, TYPE, FACTORY

COBOL for OS/390 & VM V2R2 with
PQ49375

EXECUTE

94 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|

|
|

|

|
|

|
|

|
|
|

Table 15. New reserved words, by compiler. (continued)

Compiler Reserved word

Enterprise COBOL V3R1 JNIENVPTR, NATIONAL, XML, END-XML,
XML-EVENT, XML-CODE, XML-TEXT,
XML-NTEXT, FUNCTION-POINTER

Enterprise COBOL V3R4 NATIONAL-EDITED, GROUP-USAGE

Enterprise COBOL V4R1 XML-NAMESPACE, XML-NAMESPACE-
PREFIX, XML-NNAMESPACE,
XML-NNAMESPACE-PREFIX

Enterprise COBOL V4R2 XML-SCHEMA
Note: XML-INFORMATION is added as a
reserved word with APAR PM85035.

Enterprise COBOL V5R1 XML-INFORMATION

Enterprise COBOL V5R2 VOLATILE

Undocumented VS COBOL II extensions
The VS COBOL II compiler did not diagnose a period in Area A following an Area
A item (or no item) that is not valid. In Enterprise COBOL, periods in Area A must
be preceded by a valid Area A item.

SEARCH ALL statements
If you have programs that contain SEARCH ALL statements and that were
compiled with VS COBOL II, you may need to make some changes due to changes
in the behavior of the SEARCH ALL statement

The new behavior for the SEARCH ALL statement is described in “Upgrading
programs that have SEARCH ALL statements” on page 102.

Upgrading programs that use SIMVRD support
This section describes the actions to upgrade programs that use SIMVRD support.
Support for COBOL simulated variable-length relative-record data sets (RRDS) is
removed for programs compiled with Enterprise COBOL Version 4 or later. These
files must be changed to VSAM RRDS files.

In COBOL compilers that supported the NOCMPR2 compiler option before
Enterprise COBOL Version 4, it was possible to use COBOL simulated variable-length
RRDS using a VSAM KSDS when you used the SIMVRD runtime option support.

The coding that you use in a COBOL program to identify and describe VSAM
variable-length RRDS and COBOL simulated variable-length RRDS is similar. With
Enterprise COBOL Version 4 you must use VSAM variable-length RRDS support.
In general, the only action to migrate from COBOL simulated variable-length
RRDS to VSAM variable-length RRDS support is to change the IDCAMS definition
of the file.

Chapter 7. Upgrading VS COBOL II source programs 95

||

Table 16. Steps for using variable-length RRDS

Step VSAM variable-length RRDS COBOL simulated variable-length RRDS

1 Define the file with the
ORGANIZATION IS
RELATIVE clause.

Same

2 Use FD entries to describe the
records with variable-length
sizes.

Same, but you must also code RECORD IS
VARYING in the FD entry of every COBOL
program that accesses the data set.

3 Use the NOSIMVRD runtime
option.

Use the SIMVRD runtime option.

4 Define the VSAM file through
access-method services as an
RRDS.

Define the VSAM file through access-method
services as follows:

DEFINE CLUSTER INDEXED
KEYS(4,0)
RECORDSIZE(avg,m)

avg Is the average size of the COBOL
records; strictly less than m.

m Is greater than or equal to the
maximum size COBOL record + 4.

In step 2 for simulated variable-length RRDS, coding other language elements that
implied a variable-length record format did not give you COBOL simulated
variable-length RRDS. For example, the following elements alone did not cause the
use of simulated variable-length RRDS access, and therefore did not require the
SIMVRD runtime option:
v Multiple FD records of different lengths
v OCCURS . . . DEPENDING ON in the record definitions
v RECORD CONTAINS integer-1 TO integer-2 CHARACTERS

Use the REUSE IDCAMS parameter for files that contain records and that you will
open for output.
v Define the file with the ORGANIZATION IS RELATIVE clause.
v Use FD entries to describe the records with variable-length sizes.
v Use the NOSIMVRD runtime option.
v Define the VSAM file through access-method services as an RRDS.

Errors: When you work with simulated variable-length relative data sets and true
VSAM RRDS data sets, an OPEN file status 39 occurs if the COBOL file definition
and the VSAM data-set attributes do not match.

For more reference information about the commands for using variable-length
RRDS, see z/OS DFSMS: Access Method Services for Catalogs.

96 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 8. Compiling VS COBOL II programs

This section contains information about the following topics:
v Compiler options for VS COBOL II programs
v Prolog format changes

Information specific to VS COBOL II or Enterprise COBOL is noted.

Compiler options for VS COBOL II programs
The Enterprise COBOL and VS COBOL II compilers are similar. If you will be
using the same compiler options that are specified in your current VS COBOL II
applications, some internal changes might take effect, but basically the behavior is
unchanged.

If you do change compiler option settings from the ones you used with VS COBOL
II, make sure you understand the possible effects on your applications. For
information about converting your source programs from CMPR2 to NOCMPR2
see “Upgrading programs compiled with the CMPR2 compiler option” on page
107. For information about other compiler options, see the Enterprise COBOL
Programming Guide.

Compiling with Enterprise COBOL
Table 17 lists the Enterprise COBOL compiler options that have special relevance to
converted programs.

Table 17. Key Enterprise COBOL compiler options for VS COBOL II programs

Enterprise COBOL
compiler options Comments

PGMNAME If compiling with Enterprise COBOL, use the
PGMNAME(COMPAT) option to ensure that program names are
processed in a manner compatible with VS COBOL II (and
COBOL/370).

TEST The syntax of the TEST option is different in Enterprise COBOL
than in VS COBOL II. The TEST option now has two suboptions.
You can specify whether or not source file information is stored in
the object and whether or not JUMPTO and GOTO commands are
enabled for use with Debug Tool.

TEST without any suboptions gives you TEST(NOEJPD,SOURCE).
For more information about the TEST option, see the Enterprise
COBOL Programming Guide.

Compiler options not supported in Enterprise COBOL
Table 18 on page 98 lists the VS COBOL II compiler options that are not supported
in Enterprise COBOL. In some cases, the function of the VS COBOL II compiler
option is mapped to an Enterprise COBOL compiler option, as described in the
comments section.

© Copyright IBM Corp. 1991, 2019 97

Table 18. Compiler options not supported in Enterprise COBOL

VS COBOL II
compiler options Comments

CMPR2 The CMPR2 option is not supported. You must convert programs
compiled with CMPR2 to 85 COBOL Standard in order to compile
them with Enterprise COBOL.

FDUMP/NOFDUMP Enterprise COBOL does not provide the FDUMP compiler option.
For existing applications, FDUMP is mapped to the Enterprise
COBOL TEST compiler option, which can provide equivalent
function and more.

Language Environment generates a better formatted dump than VS
COBOL II, regardless of the FDUMP option. The use of TEST
enables Language Environment to include the symbolic dump of
information about data items in the formatted dump.

For information about how to obtain the Language Environment
formatted dump at abnormal termination, see the Language
Environment Debugging Guide and Run-Time Messages.

If NOFDUMP is encountered, Enterprise COBOL issues a warning
message because NOFDUMP is not supported.

FLAGMIG The FLAGMIG option is not supported in Enterprise COBOL.
FLAGMIG requires CMPR2, which is not supported in Enterprise
COBOL. To get similar migration flagging use CCCA, this Migration
Guide, or a compiler released prior to Enterprise COBOL to compile
programs that use FLAGMIG.

FLAGSAA Enterprise COBOL does not support the FLAGSAA option. If
FLAGSAA is specified, Enterprise COBOL issues a warning
message.

NUMPROC(MIG) NUMPROC(PFD) and NUMPROC(NOPFD) are still available. If
NUMPROC(MIG) is specified, Enterprise COBOL issues a warning
message and the compilation will get the default setting for
NUMPROC. This is either the user-customized default or the IBM
default, which is NUMPROC(NOPFD).

To migrate your programs compiled with NUMPROC(MIG) to
Enterprise COBOL V5.2, consider using the NUMCHECK compiler
option to help you migrate to NUMPROC(PFD):

1. Compile your programs with NUMCHECK(ZON,PAC) and
NUMPROC(PFD).

2. Run a thorough regression test with a good breadth of input
data.

If your applications get no NUMCHECK messages or NUMCHECK
abends, you can safely compile with NUMPROC(PFD) and
NONUMCHECK for production. This will not only solve the
invalid data problem, but NUMPROC(PFD) is the most efficient
setting for the NUMPROC compiler option.

NUMCHECK is introduced in Enterprise COBOL V5.2 with PTF for
APAR PI81006 installed. For details, see NUMCHECK in the
Enterprise COBOL Programming Guide.

RES/NORES Enterprise COBOL does not provide the RES/NORES compiler
option. If RES is encountered, Enterprise COBOL issues an
informational message. If NORES is encountered, Enterprise
COBOL issues a warning message.

98 Enterprise COBOL for z/OS, V5.2 Migration Guide

||
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

||
|
|
|
|

Prolog format changes
The prolog of an object program is the code that the compiler generates at the
entry point of the program. It also contains data that identifies the program.

Object modules generated by Enterprise COBOL are Language Environment
conforming, and thus have a different prolog format than in VS COBOL II. Existing
applications that scan for date and time and user-level information need to be
updated to the new format.

You can compile your programs with the Enterprise COBOL LIST compiler option
to generate a listing that you can use to compare the VS COBOL II format with the
Enterprise COBOL format.

Chapter 8. Compiling VS COBOL II programs 99

|
|

|
|

|
|
|
|

|
|
|

100 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 9. Upgrading IBM COBOL source programs

There are differences in COBOL language support between IBM COBOL and
Enterprise COBOL.

This information will help you determine which IBM COBOL programs need
source modifications in order to compile with Enterprise COBOL. For example,
IBM COBOL programs compiled with the CMPR2 option require source
modification because Enterprise COBOL does not support the CMPR2/NOCMPR2
compiler option.

This section contains information about the following items that you will need to
consider when upgrading IBM COBOL source programs to Enterprise COBOL:
v Determining which programs require upgrade before you compile with

Enterprise COBOL
v Upgrading SOM-based object-oriented (OO) COBOL programs
v SOM-based OO COBOL language elements that are not supported
v SOM-based OO COBOL language elements that are changed
v New reserved words in Enterprise COBOL
v Language Environment runtime considerations

For information about upgrading programs compiled with the CMPR2 compiler
option, see “Migrating from the CMPR2 compiler option to NOCMPR2” on page
107.

For more information about migrating from the separate CICS translator to the
integrated CICS translator, see “Migrating from the separate CICS translator to the
integrated translator” on page 212

Determining which programs require upgrade before you compile with
Enterprise COBOL

Many IBM COBOL programs will compile without change under Enterprise
COBOL.

These programs, however, will need to be upgraded before compiling with
Enterprise COBOL:
v Programs that have SEARCH ALL statements
v Programs that use the SIMVRD support
v Programs that use words which are now reserved in Enterprise COBOL
v Programs that have undocumented IBM COBOL extensions
v Programs that contain the format 2 declarative syntax: USE...AFTER...LABEL

PROCEDURE..., and optionally the syntax: GO TO MORE-LABELS. The support for
these were removed in Enterprise COBOL Version 5

v Programs that use DATE FORMAT data types and/or DATEVAL, UNDATE or
YEARWINDOW functions for Y2K

v Programs that have SOM-based object-oriented COBOL syntax
v Programs compiled with the CMPR2 compiler option

© Copyright IBM Corp. 1991, 2019 101

|

|

|
|

|
|
|
|
|

|
|

|
|

|

|

|

|

|

|
|
|

|
|
|

|
|

|

|
|

|
|

|

|

|

|

|
|
|

|
|

|

|

Upgrading programs that have SEARCH ALL statements
Enterprise COBOL has corrected errors in the implementation of the SEARCH ALL
statement. SEARCH ALL statements in earlier releases of COBOL contained errors
in the key comparison logic, which caused different results than might have been
intended. In particular, the comparison did not produce the same result as an IF
statement or a sequential SEARCH statement.

Length mismatch problem: a search argument is longer than the table key

The SEARCH ALL statement comparisons should pad an alphanumeric key with
blanks or extend a numeric key with leading zeros if the key is shorter than the
SEARCH argument. However, in V3R3 and earlier releases, SEARCH ALL ignored
the excess characters in the argument in some cases. For example, an alphanumeric
search argument of 01 ARG PIC X(6) containing "ABCDEF" would incorrectly
match a table or array key of 05 MY-KEY PIC X(4) with value "ABCD". A search
argument containing "ABCD??" (where ? is a blank) would match, as expected.

Similar problems occurred with a numeric search argument and keys. For example,
a search argument of 01 ARG PIC 9(6) containing 123456 would incorrectly match
a table or array key of 05 MY-KEY PIC 9(4) with value 3456. A search argument
containing 003456 would match, as expected.

Sign mismatch problem: signed numeric argument and unsigned numeric key

A second problem occurs when the search argument is a signed numeric item and
the table key is an unsigned numeric item. If the runtime value of the search
argument is negative, such as -1234, programs compiled with V3R3 and earlier
would match a table key of 1234. These comparisons should be done using the
rules for a normal COBOL relation condition, and a negative argument such as
-1234 should never match a table key that is unsigned.

The correction:

Enterprise COBOL corrected these problems. However, some applications compiled
with earlier releases might depend on the incorrect behavior. You must identify
and modify these applications before you move them to Enterprise COBOL Version
4 or later.

To assist you in identifying the programs and SEARCH ALL statements that are
impacted by these corrections, the following compiler and runtime warning
diagnostics are issued.
v Compiler messages: Enterprise COBOL compiler generates the following

compiler diagnostics. Whether there is an actual impact depends on the contents
of the argument at run time.
– IGYPG3189-W for all SEARCH ALL statements that have a search argument

that is longer than the table key, and hence might be impacted by the first
problem

– IGYPG3188-W when the search argument is a signed numeric item and the
table key is an unsigned numeric item, and hence the program might be
impacted by the second problem

v Runtime messages: The following runtime messages are generated. Programs
that generate either of these runtime messages might be affected by the change.
– IGZ0194W for all SEARCH ALL statements that have search arguments with

excess bytes that are not blank or zero.

102 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

– IGZ0193W when the search argument is a signed numeric item with a
negative value and the table key is an unsigned numeric item.

To migrate

To move an application to Enterprise COBOL Version 4 or later, do one of the
following sets of steps:
v Act on the compiler messages:

1. Compile your programs with Enterprise COBOL
2. Review any SEARCH ALL statements that are flagged with compiler

messages IGYPG3188-W or IGYPG3189-W; such statements are potentially
impacted.

Tip: To minimize the possibility of incompatible results, you can force
programmers at your site to correct these SEARCH ALL statements by
changing the severity of these messages to E or S. To change the severity of
these messages, you can use the MSGEXIT suboption of the EXIT compiler
option. By doing this, the programs that get these messages cannot be run
until the code is corrected. The sample user exit IGYMSGXT has sample code
in it to change the severity of IGYPG3188-W and IGYPG3189-W, to
IGYPG3188-S and IGYPG3189-S, respectively.

v Act on the runtime messages:
1. Run the application in a test environment.
2. Review any SEARCH ALL statements that generate runtime message

IGZ0193W or IGZ0194W.

After you have identified which of the SEARCH ALL statements are affected,
adjust the application logic appropriately by doing the following steps:
v For SEARCH ALL statements in which the search argument is longer than the

table key, do one of the following actions:
– Ensure that any bytes in the argument in excess of the key length are spaces

or zeroes as appropriate.

Tip: When you have completed this investigation and if you decided not to
change your programs, you can change the severity of IGYPG3188-W and
IGYPG3189-W, to IGYPG3188-I and IGYPG3189-I, respectively, or suppress
these messages entirely, by using the MSGEXIT suboption of the EXIT
compiler options. This allows your programs to then compile with RC=0. The
sample user exit IGYMSGXT has sample code in it to change the severity of
IGYPG3188-W and IGYPG3189-W.

– Move the argument to a temporary data item of the same size as the key and
use the temporary item as the search argument.

– Limit the range of the comparison with reference-modification. For example:
- in the alphanumeric case of search argument 01 ARG PIC X(6) and key of

05 MY-KEY PIC X(4) use this:
WHEN MY-KEY (MY-INDEX) = ARG(1:4)

- in the numeric case of search argument 01 ARG PIC 9(6) and array key of
05 MY-KEY PIC 9(4) use this:
WHEN MY-KEY (MY-INDEX) = ARG(3:4)

The second and third actions above will prevent the warning message in the
future.

Chapter 9. Upgrading IBM COBOL source programs 103

|
|

|

|
|

|

|

|
|
|

|
|
|
|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

|

|
|

|

|
|

|

|
|

v For SEARCH ALL statements in which the search argument is signed and the
table key is unsigned, ensure that the search argument is correctly initialized to
a positive value before the SEARCH statement is run. Depending on the specific
application logic in the COBOL program, it might be possible to make one of the
following changes:
– Change the data description of the argument to be unsigned.
– Move the search argument to a temporary variable with no sign and use the

temporary variable in the SEARCH ALL statement.

Either action will prevent the warning message in the future.

Upgrading programs that use SIMVRD support
This section describes the actions to upgrade programs that use SIMVRD support.
Support for COBOL simulated variable-length relative-record data sets (RRDS) is
removed for programs compiled with Enterprise COBOL Version 4 or later. These
files must be changed to VSAM RRDS files.

In COBOL compilers that supported the NOCMPR2 compiler option before
Enterprise COBOL Version 4, it was possible to use COBOL simulated variable-length
RRDS using a VSAM KSDS when you used the SIMVRD runtime option support.

The coding that you use in a COBOL program to identify and describe VSAM
variable-length RRDS and COBOL simulated variable-length RRDS is similar. With
Enterprise COBOL Version 4 you must use VSAM variable-length RRDS support.
In general, the only action to migrate from COBOL simulated variable-length
RRDS to VSAM variable-length RRDS support is to change the IDCAMS definition
of the file.

Table 19. Steps for using variable-length RRDS

Step VSAM variable-length RRDS COBOL simulated variable-length RRDS

1 Define the file with the
ORGANIZATION IS
RELATIVE clause.

Same

2 Use FD entries to describe the
records with variable-length
sizes.

Same, but you must also code RECORD IS
VARYING in the FD entry of every COBOL
program that accesses the data set.

3 Use the NOSIMVRD runtime
option.

Use the SIMVRD runtime option.

4 Define the VSAM file through
access-method services as an
RRDS.

Define the VSAM file through access-method
services as follows:

DEFINE CLUSTER INDEXED
KEYS(4,0)
RECORDSIZE(avg,m)

avg Is the average size of the COBOL
records; strictly less than m.

m Is greater than or equal to the
maximum size COBOL record + 4.

In step 2 for simulated variable-length RRDS, coding other language elements that
implied a variable-length record format did not give you COBOL simulated
variable-length RRDS. For example, the following elements alone did not cause the
use of simulated variable-length RRDS access, and therefore did not require the
SIMVRD runtime option:

104 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|
|

|

|
|

|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

||

|||

||
|
|

|

||
|
|

|
|
|

||
|
|

||
|
|

|
|

|
|
|

||
|

||
|
|

|
|
|
|
|

v Multiple FD records of different lengths
v OCCURS . . . DEPENDING ON in the record definitions
v RECORD CONTAINS integer-1 TO integer-2 CHARACTERS

Use the REUSE IDCAMS parameter for files that contain records and that you will
open for output.
v Define the file with the ORGANIZATION IS RELATIVE clause.
v Use FD entries to describe the records with variable-length sizes.
v Use the NOSIMVRD runtime option.
v Define the VSAM file through access-method services as an RRDS.

Errors: When you work with simulated variable-length relative data sets and true
VSAM RRDS data sets, an OPEN file status 39 occurs if the COBOL file definition
and the VSAM data-set attributes do not match.

For more reference information about the commands for using variable-length
RRDS, see z/OS DFSMS: Access Method Services for Catalogs.

Language Environment runtime considerations
Enterprise COBOL programs use the Language Environment STACK storage in
several cases where IBM COBOL used HEAP storage. These cases include intrinsic
functions UPPER-CASE and LOWER-CASE. Recompiling with Enterprise COBOL
may result in a significant STACK storage usage difference. If the STACK is
allocated below the 16-MB line and a large DSA (Dynamic Save Area) is needed,
an insufficient storage error might occur.

To see the amount of storage that is required, compile your program with the
compiler options MAP and LIST. Look for FuncResultTemp under the listing line:
***** AUTOMATIC MAP******

You may need to reduce the amount of storage required or change to
STACK=(...ANYWHERE..) to use storage above the line.

Numeric items with PICTURE P considerations
In Enterprise COBOL, when a data item whose PICTURE character-string contains
the symbol P is referenced, the digit positions specified by the symbol P are
considered to contain zeros when the sending operand is numeric.

For example, if you move a data item with PICTURE 9P VALUE IS 10 to data items
with PICTURE 99 and PICTURE XX, it will result in the receiving fields containing 10
in both cases. But if a numeric item is not required, as when the item is compared
to an alphanumeric item, the character value will be used. For example, an item
with PICTURE 9P and VALUE IS 10 is equal to an item with PICTURE XX and VALUE
IS "1 " (digit 1 followed by a space).

New reserved words in Enterprise COBOL
Enterprise COBOL has a few more reserved words than IBM COBOL. If your IBM
COBOL programs use these reserved words as user-defined words, then they must
be changed before you can compile your programs with Enterprise COBOL.

Chapter 9. Upgrading IBM COBOL source programs 105

|

|

|

|
|

|

|

|

|

|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

New reserved words
If your programs use any of the new reserved words as user-defined words (such
as data item names or paragraph names), then those words must be changed. You
can do something similar to what CCCA does and just add a suffix such as -85 to
all instances of the word. For example:
77 VOLATILE PIC S9(9) BINARY.
Move 0 TO VOLATILE.

To compile with Enterprise COBOL V5, change it to:
77 VOLATILE-85 PIC S9(9) BINARY.
Move 0 TO VOLATILE-85.

The new reserved words in Enterprise COBOL V5 are XML-INFORMATION and
VOLATILE.

You can use CCCA to convert the reserved words automatically. For more
information about the CCCA tool, see Appendix C, “Conversion tools for source
programs,” on page 249.

CCCA is updated for reserved word conversions for Enterprise COBOL Version 5.1
by the PTF for APAR PM86253. For Version 5.2, CCCA is updated for reserved
word conversions by the PTF for APAR PI32750.

The following table shows the reserved words added to each subsequent release of
COBOL. For a complete list of reserved words, see Appendix B, “COBOL reserved
word comparison,” on page 233.

Table 20. New reserved words, by compiler.

Compiler Reserved word

COBOL/370 V1R1 FUNCTION, PROCEDURE-POINTER

COBOL for MVS & VM V1R2 CLASS-ID, METACLASS, RECURSIVE,
END-INVOKE, METHOD, REPOSITORY,
INHERITS, METHOD-ID, RETURNING,
INVOKE, OBJECT, SELF, SUPER,
LOCAL-STORAGE, OVERRIDE

COBOL for OS/390 & VM V2R1 Same as COBOL for MVS & VM

COBOL for OS/390 & VM V2R2 COMP-5, COMPUTATIONAL-5, EXEC,
END-EXEC, SQL, TYPE, FACTORY

COBOL for OS/390 & VM V2R2 with
PQ49375

EXECUTE

Enterprise COBOL V3R1 JNIENVPTR, NATIONAL, XML, END-XML,
XML-EVENT, XML-CODE, XML-TEXT,
XML-NTEXT, FUNCTION-POINTER

Enterprise COBOL V3R4 NATIONAL-EDITED, GROUP-USAGE

Enterprise COBOL V4R1 XML-NAMESPACE, XML-NAMESPACE-
PREFIX, XML-NNAMESPACE,
XML-NNAMESPACE-PREFIX

Enterprise COBOL V4R2 XML-SCHEMA
Note: XML-INFORMATION is added as a
reserved word with APAR PM85035.

Enterprise COBOL V5R1 XML-INFORMATION

Enterprise COBOL V5R2 VOLATILE

106 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|
|
|
|

|
|

|

|
|

|
|

|
|
|

||

SEARCH ALL statements
If you have programs that contain SEARCH ALL statements and that were
compiled with IBM COBOL, you may need to make some changes due to changes
in the behavior of the SEARCH ALL statement

You need to take some actions for certain programs that have SEARCH ALL
statements and that were compiled with one of the following compilers:
v COBOL for OS/390 & VM
v COBOL for MVS & VM
v COBOL/370

The new behavior for the SEARCH ALL statement is described in “Upgrading
programs that have SEARCH ALL statements” on page 102.

Migrating from the CMPR2 compiler option to NOCMPR2
If your COBOL programs were compiled with the CMPR2 option, you must
convert them to NOCMPR2 programs to compile them with Enterprise COBOL.
The CMPR2/NOCMPR2 option is not supported in Enterprise COBOL.

Enterprise COBOL programs behave as if NOCMPR2 is always in effect.

Upgrading programs compiled with the CMPR2 compiler
option

Beginning with VS COBOL II Release 3.0, you could choose the 85 COBOL
Standard behavior (without the Intrinsic Function module) by using NOCMPR2, or
the 74 COBOL Standard behavior by using the CMPR2 compiler option. But with
Enterprise COBOL, programs must be at the 85 COBOL Standard level.

The CMPR2 option provided the Standard COBOL 74 behavior as implemented by
VS COBOL II Release 2, as well as nonstandard Release 2 extensions now
implemented in 85 COBOL Standard. The NOCMPR2 option provided 85 COBOL
Standard-conforming behavior and IBM extensions. This same mechanism was
provided by IBM COBOL as an aid to allow delaying the upgrade from VS
COBOL II Release 2 level code to 85 COBOL Standard level code. In Enterprise
COBOL, this delay is not available.

Enterprise COBOL provides 85 COBOL Standard support whereas VS COBOL II
Release 2, provided the 74 COBOL Standard support (with some 85 COBOL
Standard features added in). The implementation of 85 COBOL Standard caused
some language elements to behave in a manner that differs from the
implementation of 74 COBOL Standard.

When referring to VS COBOL II Release 3 or later and IBM COBOL, the following
terms have been defined:

CMPR2
We use CMPR2 to refer to the language and behavior of programs
compiled and run with:
v VS COBOL II Release 2
v VS COBOL II, Release 3 or 4 with the CMPR2 compiler option
v IBM COBOL with the CMPR2 compiler option.

Chapter 9. Upgrading IBM COBOL source programs 107

NOCMPR2
We use NOCMPR2 to refer to the language and behavior of programs
compiled and run with:
v VS COBOL II, Release 3 or 4, with the NOCMPR2 compiler option
v IBM COBOL with the NOCMPR2 compiler option
v Enterprise COBOL

FLAGMIG
We use FLAGMIG to refer to the use of a pre-Enterprise COBOL compiler
(VS COBOL II or IBM COBOL) that supports the CMPR2 and FLAGMIG
options.

Tip: To aid you with migration to Enterprise COBOL, use a previous COBOL
compiler that supports FLAGMIG and CMPR2 to flag the statements that need to
be converted.

The language elements listed below are affected by the CMPR2/NOCMPR2
compiler option. The differences are explained in the sections that follow.

Table 21. Language elements different between CMPR2 and NOCMPR2

Language element Page

ALPHABET clause of the SPECIAL-NAMES paragraph “ALPHABET clause of the
SPECIAL-NAMES paragraph” on
page 109

ALPHABETIC class “ALPHABETIC class” on page 109

CALL ... ON OVERFLOW “CALL . . . ON OVERFLOW” on
page 110

Comparisons between scaled integers and nonnumerics “Comparisons between scaled
integers and nonnumerics” on
page 111

COPY...REPLACING statements using non-COBOL
characters

“COPY ... REPLACING statements
using non-COBOL characters” on
page 112

COPY statement using national extension characters “COPY statement using national
extension characters” on page 114

File status codes “File status codes” on page 115

Fixed filed attributes and DCB= parameters of JCL “Fixed-file attributes and DCB=
parameters of JCL” on page 116

Implicit EXIT PROGRAM “Implicit EXIT PROGRAM” on
page 117

OPEN statement failing for QSAM file (FILE STATUS
39)

“OPEN statement failing for
QSAM files (FILE STATUS 39)” on
page 118

OPEN statement failing for VSAM files (FILE STATUS
39)

“OPEN statement failing for
VSAM files (FILE STATUS 39)” on
page 119

PERFORM return mechanism “PERFORM return mechanism”
on page 120

PERFORM...VARYING...AFTER “PERFORM ... VARYING ...
AFTER” on page 122

PICTURE clause with "A"s and "B"s “PICTURE clause with "A"s and
"B"s” on page 124

108 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 21. Language elements different between CMPR2 and NOCMPR2 (continued)

Language element Page

PROGRAM COLLATING SEQUENCE “PROGRAM COLLATING
SEQUENCE” on page 126

READ INTO and RETURN INTO “READ INTO and RETURN
INTO” on page 127

RECORD CONTAINS n CHARACTERS “RECORD CONTAINS n
CHARACTERS” on page 128

SET...TO TRUE “SET . . . TO TRUE” on page 129

SIZE ERROR on MULTIPLY and DIVIDE “SIZE ERROR on MULTIPLY and
DIVIDE” on page 131

UNSTRING operand evaluation “UNSTRING operand evaluation”
on page 132

UPSI switches “UPSI switches” on page 138

Variable-length group moves “Variable-length group moves” on
page 139

ALPHABET clause of the SPECIAL-NAMES paragraph
Whether ALPHABET is a reserved word that must be specified in the ALPHABET
clause depends on the setting of the CMPR2/NOCMPR2 option.

CMPR2: The ALPHABET clause does not include the keyword ALPHABET. In
fact, ALPHABET is not a reserved word.

For example:
SPECIAL-NAMES.

ALPHA-NAME IS STANDARD-1.

NOCMPR2: The ALPHABET clause requires the use of the keyword ALPHABET.
ALPHABET is now a reserved keyword.

For example:
SPECIAL-NAMES.

ALPHABET ALPHA-NAME IS STANDARD-1.

Messages: Compiling the program with the CMPR2 and FLAGMIG compiler
options generates the following message for each ALPHABET clause of the
SPECIAL-NAMES paragraph:

IGYDS1190-W
MIGR Alphabet-name must be preceded by the keyword "ALPHABET"
under the "NOCMPR2" compiler option.

Corrective action for ALPHABET clause of the SPECIAL-NAMES paragraph::
Add the keyword ALPHABET to the ALPHABET clause.

ALPHABETIC class
Whether the ALPHABETIC class includes the 26 lowercase letters depends on the
setting of the CMPR2/NOCMPR2 option.

CMPR2: The ALPHABETIC class of characters defined by the ALPHABETIC class
test consists of the 26 uppercase letters and the space. The 26 lowercase letters are
not considered alphabetic.

Chapter 9. Upgrading IBM COBOL source programs 109

For example:
MOVE "AbC dE" TO PIC-X6.
IF PIC-X6 IS NOT ALPHABETIC THEN DISPLAY "CMPR2".

NOCMPR2: The ALPHABETIC class of characters defined by the ALPHABETIC
class test consists of the 26 uppercase letters, the 26 lowercase letters, and the
space.

For example:
MOVE "AbC dE" TO PIC-X6.
IF PIC-X6 IS ALPHABETIC THEN DISPLAY "NOCMPR2".

Messages: Compiling the program with the CMPR2 and FLAGMIG compiler
options generates the following message for each ALPHABETIC class test:

IGYPS2221-W
MIGR The alphabetic class has been expanded to include lowercase
letters under the "NOCMPR2" compiler option.

Corrective action for the ALPHABETIC class:: Use the ALPHABETIC-UPPER
class test under NOCMPR2 to get the same function as the ALPHABETIC class test
under CMPR2. The ALPHABETIC-UPPER class under NOCMPR2 consists of the
26 uppercase letters and the space.

CALL . . . ON OVERFLOW
Whether the ON OVERFLOW condition is raised for errors other than "out of
storage" errors depends on the setting of the CMPR2/NOCMPR2 option.

CMPR2: Under CMPR2, the ON OVERFLOW condition exists if the available
portion of object time memory cannot accommodate the program specified in the
CALL statement. CMPR2 interpreted that definition to cover only the condition
"not enough storage available to load the program."

Only errors that occur on the actual LOAD of the called program raise the ON
OVERFLOW condition. Errors occurring after the program has been loaded and
has started execution do not raise the condition.

NOCMPR2: Under NOCMPR2, the ON OVERFLOW condition exists if the
program specified by the CALL statement cannot be made available for execution
at that time.

NOCMPR2 implements 85 COBOL Standard rules and defines the ON
OVERFLOW condition to handle any "recoverable" condition that may prevent the
called program from being made available.

Only errors that occur on the actual LOAD of the called program raise the ON
OVERFLOW condition. Errors occurring after the program has been loaded and
started execution do not raise the condition.

Messages: Compiling the program with the CMPR2 and FLAGMIG options will
cause the compiler to issue messages for all CALL statements that specify the ON
OVERFLOW phrase. The following message will be issued:

IGYPS2012-W
MIGR The "ON OVERFLOW" phrase of the "CALL" statement will
execute under more conditions under the "NOCMPR2" compiler option.

110 Enterprise COBOL for z/OS, V5.2 Migration Guide

The following program fragment illustrates one situation that will be affected by
this change:
PERFORM UNTIL ALL-ACCOUNTS-SETTLED...

CALL "SUBPROGA" USING CURRENT-ACCOUNT
ON OVERFLOW

CANCEL "SUBPROGB"
CALL "SUBPROGA" USING CURRENT-ACCOUNT
END-CALL

END-CALL...
CALL "SUBPROGB" USING CURRENT-ACCOUNT
ON OVERFLOW

CANCEL "SUBPROGA"
CALL "SUBPROGB" USING CURRENT-ACCOUNT
END-CALL

END-CALL...
END-PERFORM

The assumption is that for some executions of this program, SUBPROGA and
SUBPROGB might not fit into available storage at the same time. The ON
OVERFLOW phrase is used to react to this situation, and to release the storage
occupied by the other subprogram.

Running under CMPR2, the ON OVERFLOW condition will be raised only for the
"out of storage" errors, and the approach above is reasonable.

Running under NOCMPR2, the ON OVERFLOW condition might be raised for
errors other than the "out of storage" errors, and therefore, the second call (inside
the ON OVERFLOW phrase) might fail as well.

Corrective action for CALL . . . ON OVERFLOW:: No correction that is generally
applicable exists for programs using this or similar techniques. If the ON
OVERFLOW condition is indeed raised because of the "out of storage" error, the
program will exhibit the same behavior as before; if the condition is raised for
some other error, the recovery statements that you coded (in the ON OVERFLOW
phrase) might not correct the error, and the subsequent CALL will fail as well.

In general, it is not possible for an Enterprise COBOL program to determine the
actual cause of the error that raised the ON OVERFLOW condition.

Comparisons between scaled integers and nonnumerics
Comparisons between nonnumeric items and scaled numeric items are handled
differently depending on the setting of the CMPR2/NOCMPR2 option.

CMPR2: Under CMPR2, the numeric or algebraic value of a scaled numeric item
is used in comparison operations with nonnumeric items. In determining the
algebraic value, all symbols P in the PICTURE character-string are included in the
total number of digits, and zeros are used in their place.

NOCMPR2: Under NOCMPR2, the actual character representation or character
value of the scaled numeric item is used in comparison operations with
nonnumeric items. The character value for scaled numeric items does not include
any digit positions specified with the symbol P. These digit positions are ignored
and not counted in the size of the operand.

For example:

Chapter 9. Upgrading IBM COBOL source programs 111

01 NUM PIC 99PP VALUE 2300.
01 ALPHA1 PIC XX VALUE "23".
01 ALPHA2 PIC XXX VALUE "23".
01 ALPHA3 PIC XXXX VALUE "2300".

IF NUM EQUAL ALPHA1 DISPLAY "ALPHA1".
IF NUM EQUAL ALPHA2 DISPLAY "ALPHA2".
IF NUM EQUAL ALPHA3 DISPLAY "ALPHA3".

CMPR2 NOCMPR2

Results ALPHA3 ALPHA1
displayed ALPHA2

In this example, under NOCMPR2, the character value of NUM has only two digit
positions. When it is compared to a nonnumeric item of unequal length as in
ALPHA2, the shorter operand (NUM) is padded with enough blanks to equal the
length of the other operand.

Messages: Compiling a program with the CMPR2 and FLAGMIG options will
cause the compiler to issue the following message for all comparisons between
scaled integers and nonnumeric items.

IGYPG3138-W
MIGR The comparison between the scaled integer item " " and the
nonnumeric item " " will be performed differently under the "NOCMPR2"
compiler option.

Corrective action for comparisons between scaled integers and nonnumerics:: To
preserve CMPR2 behavior, you can define the scaled integer within a structure.
FILLER serves as the placeholders for the integer scaling positions and must be
initialized to zero. There must be as many alphanumeric positions defined in
FILLER as there are scaling positions in NUM. Wherever NUM is used in a
comparison with a nonnumeric item, CHARVAL should be substituted instead.
01 CHARVAL.

05 NUM PIC 99PP VALUE 2300.
05 FILLER PIC XX VALUE "00".

IF CHARVAL EQUAL ALPHA1 DISPLAY "ALPHA1".
IF CHARVAL EQUAL ALPHA2 DISPLAY "ALPHA2".
IF CHARVAL EQUAL ALPHA3 DISPLAY "ALPHA3".

COPY ... REPLACING statements using non-COBOL characters
Some non-COBOL characters in library text or COPY ... REPLACING statements
are treated differently depending on the setting of the CMPR2/NOCMPR2 option.

Non-COBOL characters are the EBCDIC characters outside the legal set of COBOL
characters, excluding nonnumeric literals. Nonnumeric literals can contain any
character within the character set of the computer.

CMPR2: Under CMPR2, library text and COPY ... REPLACING statements can
contain operands consisting of non-COBOL characters.

NOCMPR2: 85 COBOL Standard disallows all non-COBOL characters and adds
lowercase and the colon to the character set.

Lowercase alphabetic characters: "Lowercase" alphabetic characters, which were
non-COBOL with CMPR2, are now in the set of legal COBOL characters with
Enterprise COBOL. With CMPR2, COPY allowed replacement of lowercase
characters:

112 Enterprise COBOL for z/OS, V5.2 Migration Guide

COPY A REPLACING == abc == BY == XYZ ==.

The previous example would locate all instances of "abc" and replace it with
"XYZ". In contrast, Enterprise COBOL will treat lowercase and uppercase
characters as equivalent in data-names and replace all instances of "abc" as well as
"ABC" with "XYZ". If member A contains:
1 abc PIC X.
1 ABC PIC XX.

then the results are as follows:
CMPR2 NOCMPR2

After COPY & REPLACING After COPY & REPLACING
1 XYZ PIC X. 1 XYZ PIC X.
1 ABC PIC XX. 1 XYZ PIC XX.

Message: The difference in behavior is flagged by the FLAGMIG compiler option.

IGYLI0161-W
MIGR Lowercase character " " found in column " " will be treated the
same as its uppercase equivalent under the "NOCMPR2" compiler option.
Results may be different.

Corrective action for lowercase alphabetic characters:: To obtain the same results
when compiling CMPR2 programs under Enterprise COBOL, you must verify that
all your REPLACING arguments are unique (even after folding to uppercase).

The colon (:) character: With CMPR2, the colon character was a non-COBOL
character that COPY ... REPLACING allowed as part of its operands. This character
is a legal COBOL separator under Enterprise COBOL.
COPY A REPLACING == A == BY == X ==

== B == BY == Y ==
== A:B == BY == Z ==.

If member A contains:
MOVE A:B TO ID2.

These are the differences between CMPR2 and Enterprise COBOL after COPY ...
REPLACING has been performed.

CMPR2 NOCMPR2

MOVE Z TO ID2. MOVE X:Y TO ID2.

Because ":" is a separator under Enterprise COBOL, "A:B" is broken up into three
separate tokens: "A" ":" and "B." The replacements for A and B are made first.

Message: This difference in behavior between the two releases is flagged by
FLAGMIG.

IGYLI0160-W
MIGR The colon will be treated as a separator under the "NOCMPR2"
compiler option. Results may be different.

Corrective action for the colon (:) character:: To make the previous piece of code
behave in the same manner as with CMPR2, change the REPLACING clauses to:
COPY A REPLACING == A:B == BY == Z ==

== A == BY == X ==
== B == BY == Y ==.

Chapter 9. Upgrading IBM COBOL source programs 113

Characters that are not valid: Some characters do not fall into the legal COBOL
character set. Consider this example:
COPY A REPLACING == % == BY == 1 ==.

where member A contains:
% XDATA PIC X.

Here, the "non-COBOL" character is the "%" character.

Under both CMPR2 and NOCMPR2, the member above will be copied with the
replacement executed. The Enterprise COBOL compiler will issue an E-level
diagnostic message.

IGYLI0163-E
Non-COBOL character "%" was found in column 8. The character was
accepted.

In both cases, after processing all COPY statements, a legal COBOL program
should result.

Message: This difference in behavior between the two releases is flagged by
FLAGMIG.

IGYLI0162-W
MIGR Non-COBOL character "%" found in column 8 will be diagnosed
under the "NOCMPR2" compiler option. Results may be different.

Corrective action for characters that are not valid:: You should remove all
non-COBOL characters from your source programs and COPY libraries, and
replace them with COBOL characters.

This removal of non-COBOL characters will protect you against new problems in
later releases of Enterprise COBOL. Future releases may assign meaning to one of
these characters (as with the colon) and results might be different.

COPY statement using national extension characters
Whether the characters @, #, and $ can be coded in the text-name and library-name
of the COPY statement depends on the setting of the CMPR2/NOCMPR2 option.

CMPR2: National extension characters @, #, and $ are allowed in the text-name
and library-name of the COPY statement. For example in COPY X$3. the item will
be copied.

NOCMPR2: The compiler will issue an E-level diagnostic message.

IGYLI0025-E
Name "X$3" was invalid. It was processed as "X03".

Enterprise COBOL allows national extension characters @, #, and $ in the
text-name and library-name, if they are in the form of a nonnumeric literal. For
example, to copy X$3 in Enterprise COBOL, code COPY "X$3".

Message: The difference in behavior is flagged by FLAGMIG.

IGYLI0115-W
MIGR The name "X$3" did not follow the rules for formation of a
program-name. It will be diagnosed under the "NOCMPR2" compiler
option.

114 Enterprise COBOL for z/OS, V5.2 Migration Guide

Corrective action for the COPY statement that uses national extension
characters:: You should change all national extension characters in your source
programs and COPY libraries, to COBOL characters.

File status codes
The setting of the CMPR2/NOCMPR2 option affects which file status codes are
returned and the amount of detail the codes provide about input-output
operations.

CMPR2: File status codes based on the 74 COBOL Standard are returned with
CMPR2.

NOCMPR2: The file status codes are enhanced with NOCMPR2. New and
changed file status codes are returned, and more detail is provided about the
status of input-output operations. In addition, problems are detected earlier in
some cases, and there are updated definitions and file status conditions for
"missing" files.

Message: A program that contains a file status data-name will receive the
following message when compiled with the CMPR2 and FLAGMIG compiler
options:

IGYGR1188-W
MIGR The file status values are different under the "NOCMPR2"
compiler option.

Corrective action for file status codes: Although there is no one-to-one mapping
of the CMPR2 status codes to those in Enterprise COBOL, Table 22 shows, in
general, the relationships between CMPR2 and NOCMPR2 file status codes.. For a
comprehensive definition of the Enterprise COBOL file status codes, see File status
key in the Enterprise COBOL Language Reference.

Table 22. QSAM and VSAM file status codes with CMPR2 and NOCMPR2

VSAM file status codes QSAM file status codes

CMPR2 NOCMPR2 CMPR2 NOCMPR2

00 00
04
05
14
24
35
39
44

00 00
04
05
07
39
44

02 02

10 10 10 10

21 21

22 22

23 23

24 24

30 30
39

30 30
39

34 34

Chapter 9. Upgrading IBM COBOL source programs 115

|
|
|

Table 22. QSAM and VSAM file status codes with CMPR2 and NOCMPR2 (continued)

VSAM file status codes QSAM file status codes

CMPR2 NOCMPR2 CMPR2 NOCMPR2

90 37
90

90 35
37
90

91 91

92 38
41
42
43
44
47
48
49
92

92 38
41
42
43
46
47
48
49
92

93 93

94 46

95 39
95

96 96

97 97

Fixed-file attributes and DCB= parameters of JCL
The handling of block sizes, record sizes, and other fixed-file attributes is different
between CMPR2 and NOCMPR2. You might need to change your programs and
your JCL to migrate to NOCMPR2.

CMPR2: In CMPR2 programs, fixed-file attribute checking is only done at
READ/WRITE time, if done at all. An OPEN statement could succeed even if some
fixed-file attributes were inconsistent. For example, an OPEN could succeed with
different record sizes in:
v RECORD CONTAINS x clause
v JCL DCB=(LRECL=y)
v Actual data-set label

NOCMPR2: In NOCMPR2 programs, 85 COBOL Standard requires that fixed-file
attribute checking be done in many cases. As a result, a program with inconsistent
fixed file attributes might fail at OPEN time rather than have problems later. The
OPEN could fail with either runtime message IGZ0035S or file status 39 (if a file
status clause is specified). See Appendix G, “Preventing file status 39 for QSAM
files,” on page 285 for more information about preventing file status 39 for QSAM
files.

A common source of fixed file attribute inconsistency problems is the DCB=
parameter of the JCL DD statement for your file.

Messages: There are no **MIGR** messages for these differences, because
fixed-file attributes can be specified outside of the source program.

116 Enterprise COBOL for z/OS, V5.2 Migration Guide

Recommendation for DCB= parameters of JCL:

It is strongly recommended that you take advantage of features of DFSMS and
COBOL that let the system determine the block size. (In general, you should not
specify DCB= attributes except in the few cases mentioned in the Enterprise COBOL
Programming Guide.

These are the recommendations:
v For new files, let z/OS determine the block size. To take advantage of

system-determined block size:
– Code BLOCK CONTAINS 0 in your source program or use the BLOCK0

compiler option.
– Do not code RECORD CONTAINS 0 in your source program.
– Do not code a BLKSIZE value in the JCL DD statement.

v For existing blocked data sets, use the existing file block size:
– Code BLOCK CONTAINS 0 in your source program or use the BLOCK0

compiler option.
– Do not code a BLKSIZE value in the ddname definition.

The one case where you might consider putting BLKSIZE in the JCL is if you
require a specific block size for a new file and you need the flexibility to modify
that block size without recompiling your program. In this case, follow these
guidelines:
v Code BLOCK CONTAINS 0 in your source program or use the BLOCK0

compiler option.
v Code a BLKSIZE value in the ddname definition (DCB=(BLKSIZE=xxx) in the

JCL DD statement).

Implicit EXIT PROGRAM
To end a program, you must use an EXIT PROGRAM, STOP RUN, or GOBACK
statement.

You can use an EXIT PROGRAM for a called subprogram; you can use a STOP
RUN for a main program. GOBACK, an IBM extension, can be used for either type
of program.

CMPR2: Under CMPR2, if a program does not contain any of the statements
above, a compiler warning diagnostic message is issued to suggest that you should
analyze the program to verify that it could exit.

Suppose that this is the last line in the program:
IF TALLY = 0 THEN STOP RUN.

In this case, the compiler diagnostic message would not be issued, and the
following runtime message would be issued only if the IF condition tested false:

IGZ0037S
The flow of control in program "program-name" proceeded beyond the last
line of the program.

NOCMPR2: Under NOCMPR2, all programs are assumed to end with an EXIT
PROGRAM statement. For a called subprogram, then, control can no longer flow

Chapter 9. Upgrading IBM COBOL source programs 117

beyond the last line of the program, but instead, the program will return to the
calling program. In the preceding example, where the program ended with the
statement:
IF TALLY = 0 THEN STOP RUN.

a false test will cause control to be returned to the caller. With CMPR2 behavior,
the result is an abend.

For a main program, the EXIT PROGRAM statement has no effect. Therefore, the
implicit EXIT PROGRAM that is generated by the compiler will have no effect on
the execution of the program; a main program that executes beyond the last line of
the program will still abend.

Messages: A program that does not contain a STOP RUN, GOBACK, or EXIT
PROGRAM statement will receive the following diagnostic message:

IGYPS2091-W
No "STOP RUN", "GOBACK" or "EXIT PROGRAM" was found in the
program. Check program logic to verify that the program will exit.

Also, if the CMPR2 and FLAGMIG compiler options are used, the following
message will be issued:

IGYPS2223-W
MIGR An implicit "EXIT PROGRAM" will be executed at the end of
this program under the "NOCMPR2" compiler option.

If a program does contain a STOP RUN, GOBACK, or EXIT PROGRAM statement,
and the NOOPTIMIZE compiler option is in effect, then use of the FLAGMIG
compiler option will result in the following message:

IGYPS2224-W
MIGR An implicit "EXIT PROGRAM" may be executed at the end of
this program under the "NOCMPR2" compiler option. Recompile with the
"OPTIMIZE" and "FLAGMIG" compiler options. If no "MIGR" message
about an implicit "EXIT PROGRAM" is issued then no implicit "EXIT
PROGRAM" will be executed.

Upon re-compilation with the OPTIMIZE compiler option, the absence of any such
messages indicates that the program will not have an implicit EXIT PROGRAM
generated for it, while the presence of the following message indicates otherwise:

IGYOP3210-W
MIGR An implicit "EXIT PROGRAM" will be executed at the end of
this program under the "NOCMPR2" compiler option.

Corrective action for Implicit EXIT PROGRAM:: To preserve CMPR2 behavior, a
program can be modified to contain a new section and section-name as the very
last section in the program. That new section can then contain error-handling code,
such as a call to ILBOABN0.

Any program receiving a message indicating that an EXIT PROGRAM will be
implicitly generated should be examined to ensure that it will exit properly.

OPEN statement failing for QSAM files (FILE STATUS 39)
There is a difference in the way CMPR2 and NOCMPR2 handle fixed-file attributes
for QSAM files for OPEN statements.

118 Enterprise COBOL for z/OS, V5.2 Migration Guide

CMPR2: The fixed file attributes for QSAM files do not need to match between
COBOL program file definition, JCL, or data-set label for a successful file OPEN.

NOCMPR2: If the following items are inconsistent, an OPEN statement in your
program might not run successfully:
v The fixed file attributes of a file from the data set label
v The fixed file attributes specified in the JCL DD statement for a file
v The attributes specified for that file in the SELECT and FD statements of your

COBOL program

Inconsistencies in the attributes for file organization, record format (fixed or
variable), the code set, or record length result in a file status code 39, and the
OPEN statement fails.

Message: There are no **MIGR** messages for this difference, because fixed-file
attributes can be specified outside of the source program.

Corrective action for OPEN statement failing for QSAM files (FILE STATUS
39): To prevent common file status 39 problems, see Appendix G, “Preventing file
status 39 for QSAM files,” on page 285.

OPEN statement failing for VSAM files (FILE STATUS 39)
There is a difference in the way CMPR2 and NOCMPR2 handle RECORDSIZE
defined in VSAM files associated with IDCAMS.

In CMPR2, the RECORDSIZE defined in your VSAM files associated with IDCAMS
was not required to match your COBOL program file definition for successful file
OPEN.

CMPR2: The RECORDSIZE defined in your VSAM files associated with IDCAMS
was not required to match your COBOL program file definitions for successful file
OPEN.

NOCMPR2: The RECORDSIZE defined in your VSAM files associated with
IDCAMS are required to match the file definitions for those files in your COBOL
program for successful file OPEN.

Message: There are no **MIGR** messages for this difference, because the VSAM
RECORDSIZE attribute is outside of the source program.

Corrective action for OPEN statement failing for VSAM files (FILE STATUS
39): Change your program file definitions or the RECORDSIZE defined in your
VSAM files associated with IDCAMS to match according to the following table.
The following rules apply to VSAM ESDS, KSDS, and RRDS file definitions:

Table 23. Rules for VSAM file definitions

File type Rules

ESDS and
KSDS VSAM

RECORDSIZE(avg,m) is specified where avg is the average size of the
COBOL records, and is strictly less than m; m is greater than or equal
to the maximum size of a COBOL record.

RRDS VSAM RECORDSIZE(n,n) is specified where n is greater than or equal to the
maximum size of a COBOL record.

Chapter 9. Upgrading IBM COBOL source programs 119

PERFORM return mechanism
There is a difference in the way CMPR2 and NOCMPR2 handle out-of-line
PERFORM statements that might require corrective action.

When a paragraph or a range of paragraphs is executed with a PERFORM
statement ("out-of-line PERFORM"), a mechanism at the end of the range of
paragraphs causes control to be returned to the point just after the PERFORM
statement.

Consider the following example:
PERFORM A
STOP RUN.

A. DISPLAY "Hi".
B. DISPLAY "there".

After displaying the message "Hi," compiler-generated code will cause the flow of
control to return to the STOP RUN statement after performing paragraph A.
Without this, control would fall through into paragraph B.

This code mechanism is reset to an initial state the first time a program is called or
when a program is cancelled. Under NOCMPR2, it is also reset every time a
program is called. Under CMPR2, the mechanism retains its last-used state when a
program is called twice in succession without having been cancelled. This can be
important when the program issues an EXIT PROGRAM or GOBACK statement
before all of the PERFORM statements have completed their execution.

Now consider this example:
IF FIRST-TIME-CALLED THEN

PERFORM A
MOVE ZERO TO N

ELSE
SUBTRACT 1 FROM N
GO TO A.

GOBACK.
A. IF N > 1 THEN

GOBACK.
B. DISPLAY "Processing continues...".

The program is passed a switch, FIRST-TIME-CALLED, which tells the program
whether or not the program has been called without having been cancelled. It is
also passed a variable, N.

CMPR2: When the program is called for the first time, the PERFORM statement
will be executed. If the "N > 1" test succeeds, the program will return to the calling
program.

However, this means that the PERFORM statement has not reached normal
completion because paragraph A never returned to the point from which it was
performed. The compiler-generated mechanism at the end of paragraph A is still
"set" to return back to the PERFORM statement.

Thus, on the second call to the program, the ELSE path will be taken, 1 will be
subtracted from N, and control will be transferred by the GO TO statement to
paragraph A. However, if the test "N > 1" fails, the PERFORM mechanism is still
set. So, when the end of paragraph A is reached, instead of falling through into
paragraph B, control is "returned" to the MOVE statement after the PERFORM
statement.

120 Enterprise COBOL for z/OS, V5.2 Migration Guide

These results might not be intended. The problem might occur whenever all of the
following conditions occur:
1. The program returns to the calling program with an EXIT PROGRAM or

GOBACK statement.
2. A PERFORM statement performs a paragraph or a range of paragraphs, and

those paragraphs might also be reached by a GO TO statement or by falling
through into the paragraph.

3. All such PERFORM statements have not had a chance to return prior to the
execution of the EXIT PROGRAM or GOBACK statement.

NOCMPR2: Under NOCMPR2, when the program is called for the first time, the
PERFORM statement will be executed and control will flow to paragraph A. Then,
depending on the result of the test "N > 1," the program will either immediately
return to the calling program, or it will return to the PERFORM, move zero to N,
and then return to the calling program.

On subsequent calls to the program, the ELSE path will be taken, 1 will be
subtracted from N, and then control will be transferred by the GO TO statement to
paragraph A. Then, depending on the result of the test "N > 1," the program will
either immediately return to the calling program or fall through into paragraph B,
display a message, and continue.

Regardless of the paths taken, the mechanism that controls the PERFORM
statement will be reset each time the program is called and no irregular control
flow will take place.

Messages: A program that contains an out-of-line PERFORM, and either an EXIT
PROGRAM or GOBACK statement, will receive the following messages when
compiled with the CMPR2, FLAGMIG, and NOOPTIMIZE compiler options:

IGYPA3205-W
MIGR "EXIT PROGRAM" or "GOBACK" statements assume that ends
of "PERFORM" ranges were reached under the "NOCMPR2" compiler
option. This program may have different execution results after migration
if used as a subprogram.

IGYPA3206-W
MIGR For more information about ends of "PERFORM" ranges,
recompile with the "OPTIMIZE" and "FLAGMIG" compiler options. If no
messages about ends of "PERFORM" ranges are issued, then this program
will not have a migration problem with ends of "PERFORM" ranges.

Upon re-compilation with the OPTIMIZE compiler option, the absence of any such
messages indicates that the program will not have any problem with an EXIT
PROGRAM or GOBACK statement being executed within the range of an
out-of-line PERFORM statement, while the presence of the following messages
indicates otherwise:

IGYOP3205-W
MIGR "EXIT PROGRAM" or "GOBACK" statements assume that ends
of "PERFORM" ranges were reached under the "NOCMPR2" compiler
option. This program may have different execution results after migration
if used as a subprogram.

IGYOP3092-W
An "EXIT PROGRAM" or a "GOBACK" statement was encountered in the

Chapter 9. Upgrading IBM COBOL source programs 121

range of the "PERFORM" statement at "PERFORM (LINE xx.xx)". Re-entry
of the program may cause unexpected control flow.

Corrective action for the PERFORM return mechanism:: The CMPR2 behavior of
affected programs cannot be preserved without extensive and complex recoding.
Such programs should be rewritten to avoid this dependency on the CMPR2
behavior.

PERFORM ... VARYING ... AFTER
Certain identifiers in the VARYING phrase of the PERFORM statement are set and
incremented differently depending on whether CMPR2 or NOCMPR2 is in effect.

Identifiers are set and increment differently, for example:
PERFORM PARA3 VARYING id-2 FROM id-3 BY id-4

UNTIL condition-1
AFTER id-5 FROM id-6 BY id-7

UNTIL condition-2.

CMPR2: Within the VARYING ... AFTER phrase of the PERFORM statement
under CMPR2, id-5 is set before id-2 is augmented.

When varying two variables under CMPR2, at the intermediate stage when the
inner condition is true, the inner variable (id-5) was set to its current FROM value
(id-6) before the outer variable (id-2) was augmented with its current BY value
(id-4).

NOCMPR2: However, under NOCMPR2, id-2 is augmented before id-5 is set.
This change creates an incompatibility when id-6 is dependent on id-2.

Consider the following example:
PERFORM PARA3 VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3

AFTER Y FROM X BY 1 UNTIL Y IS GREATER THAN 3.

In this example, id-6 (X) is dependent on id-2 (X) because they are identical.

Under CMPR2, PARA3 will be executed eight times with the following values:
X: 1 1 1 2 2 2 3 3
Y: 1 2 3 1 2 3 2 3

Under NOCMPR2, PARA3 will be executed six times with the following values:
X: 1 1 1 2 2 3
Y: 1 2 3 2 3 3

A dependency between identifiers occurs if the first identifier is identical to,
subscripted with, a partial or full redefinition of, or variably located depending on
the second identifier.

Message: First, recompile all programs under an earlier COBOL compiler with the
CMPR2 and FLAGMIG compiler options. This will flag any PERFORM ...
VARYING statements that have dependencies between the following variables:
v id-6 is (potentially) dependent on id-2
v id-9 is (potentially) dependent on id-5
v id-4 is (potentially) dependent on id-5
v id-7 is (potentially) dependent on id-8

Only PERFORM ... VARYING with the AFTER phrase is affected.

122 Enterprise COBOL for z/OS, V5.2 Migration Guide

For example, compiling the program under an earlier COBOL compiler with the
CMPR2 and FLAGMIG compiler options causes the compiler to issue the following
message when id-6 is dependent on id-2:

IGYPA3209-W
MIGR "PERFORM ... VARYING" operand "ID-6 (NUMERIC INTEGER)"
was dependent on "ID-2 (NUMERIC INTEGER)". Under the "NOCMPR2"
compiler option, the rules for augmenting/setting "PERFORM ...
VARYING" operands have changed, and this statement may have
incompatible results.

Corrective action for PERFORM . . . VARYING . . . AFTER: If a PERFORM ...
VARYING statement is flagged by FLAGMIG, that statement will have to be
converted. A possible way of converting a PERFORM ... VARYING statement that
has all four dependencies is as follows:
PERFORM xx

VARYING id-2 FROM id-3 BY id-4 UNTIL cond-1
AFTER id-5 FROM id-6 BY id-7 UNTIL cond-2
AFTER id-8 FROM id-9 BY id-10 UNTIL cond-3.

is converted into:
MOVE id-3 TO id-2.
MOVE id-6 TO id-5
MOVE id-9 TO id-8

PERFORM UNTIL cond-1
PERFORM UNTIL cond-2
PERFORM UNTIL cond-3

PERFORM xx
ADD id-10 TO id-8

END-PERFORM
MOVE id-9 TO id-8
ADD id-7 TO id-5

END-PERFORM
MOVE id-6 TO id-5
ADD id-4 TO id-2

END-PERFORM

This example assumes that all id-x are identifiers. If any are index-names, then SET
statements must be used in place of MOVE statements.

The example above is a worst-case conversion. It could be refined by changing
only the parts of the statement that use those identifiers for which a dependency
(potentially) exists. For example, if only id-6 is dependent on id-2 and no other
dependency exists, the conversion above can be reduced to:
MOVE id-3 TO id-2.
MOVE id-6 TO id-5.

PERFORM UNTIL cond-1
PERFORM UNTIL cond-2
PERFORM VARYING id-8 FROM id-9 BY id-10 UNTIL cond-3

PERFORM XX
END-PERFORM
ADD id-7 TO id-5

END-PERFORM
MOVE id-6 TO id-5
ADD id-4 TO id-2

END-PERFORM

Chapter 9. Upgrading IBM COBOL source programs 123

PICTURE clause with "A"s and "B"s
A data item that has the symbol B in its PICTURE clause is treated either as
alphabetic or alphabetic-edited depending on whether CMPR2 or NOCMPR2 is in
effect.

CMPR2: Under CMPR2, a data item with the symbol B in its PICTURE clause is
an alphabetic data item.

NOCMPR2: Under NOCMPR2, a data item with the symbol B in its PICTURE
clause is an alphanumeric-edited item.

Most functions do not pose a problem with this change. However, there are a few
subtleties that you should watch for when upgrading from CMPR2 to Enterprise
COBOL, relating to the INITIALIZE, STRING, CALL and CANCEL verbs.

Message: If a program is compiled with the CMPR2 and FLAGMIG options, a
message is issued for any alphabetic items that had been defined with the symbol
B.

IGYDS1105-W
MIGR A "PICTURE" clause was found consisting of symbols "A" and
"B". This alphabetic item will be treated as an alphanumeric-edited item
under the "NOCMPR2" compiler option.

INITIALIZE verb: Consider the following example:
01 ALPHA PIC AABAABAA.

INITIALIZE ALPHA REPLACING ALPHABETIC DATA BY ALL "3".

A statement like this coded under CMPR2 is valid and initialization will take
place. However, this statement gives the following warning message under
NOCMPR2, and no initialization will take effect:

IGYPS2047-W
"INITIALIZE" statement receiver "ALPHA" was incompatible with the data
category(s) of the "REPLACING" operand(s). "ALPHA" was not initialized.

This incompatibility can also happen when a group of items are being initialized.
Under NOCMPR2, ALPHA above would be classified as alphanumeric-edited. If
ALPHA was defined in a group that was to be initialized, a message like the one
above would be issued only if there were no alphabetic items to be initialized.
Thus, in the following example, ALPHA is never initialized, but no message alerts
you to that fact.
01 GROUP1.

05 ALPHA PIC AABAA.
05 BETA PIC AAA.

INITIALIZE GROUP1 REPLACING ALPHABETIC DATA BY ALL "5".

Corrective action for the INITIALIZE verb: To initialize any of these reclassified
data items in the same manner as they had been previously, change the original
statement for the first example above to the following statement:
INITIALIZE ALPHA REPLACING

ALPHANUMERIC-EDITED DATA BY ALL "3".

In the second example, which shows a group of possibly mixed types, INITIALIZE
should be supplemented with an additional phrase. For example:

124 Enterprise COBOL for z/OS, V5.2 Migration Guide

INITIALIZE GROUP1 REPLACING
ALPHABETIC DATA BY ALL "5"
ALPHANUMERIC-EDITED DATA BY ALL "5".

Important: Adding this extra phrase could cause conflicts if you already specified
this phrase but used different replacing data or if you had other
alphanumeric-edited items within the group that you did not want initialized.

STRING verb: With either CMPR2 or NOCMPR2, alphabetic items are allowed to
be the STRING...INTO receiving field. However, edited items are not allowed.
Therefore, if any CMPR2 programs have an alphabetic item defined with the
symbol B in this position of the STRING verb, these statements will get a severe
error message from Enterprise COBOL because this item is reclassified as
alphanumeric-edited.

IGYPA3104-S
"STRING INTO" identifier "ALPHA (ALPHANUMERIC-EDITED)" was an
edited data item or was defined with the "JUSTIFIED" clause. The
statement was discarded.

Corrective action for the STRING verb: Because a STRING statement with
CMPR2 would automatically overlay any positions represented with the symbol B,
all that is really needed is a new alphabetic data-name redefined on the original
INTO field. For example:

Statement under CMPR2:
01 ALPHA PIC AABAABAA.
01 VARX PIC A(3) VALUE "XXX".
01 VARY PIC A(3) VALUE "YYY".

STRING VARX VARY DELIMITED BY SIZE INTO ALPHA.

Statement under NOCMPR2:
01 ALPHA PIC AABAABAA
01 BETA REDEFINES ALPHA PIC A(8).
01 VARX PIC A(3) VALUE "XXX".
01 VARY PIC A(3) VALUE "YYY".

STRING VARX VARY DELIMITED BY SIZE INTO BETA.

BETA is redefined on ALPHA and has a length equal to ALPHA, including all
symbols of B. BETA is then used in the STRING statement. After STRING is
executed, ALPHA will have the same value as it did with CMPR2.

CALL and CANCEL verbs: An IBM extension allows the CALL and CANCEL
statement identifier to be an alphabetic data item. However, alphanumeric-edited
items are not allowed; therefore, any CMPR2 programs with alphabetic items
defined with the symbol B will get a severe error message. For example, the
following program would have worked with CMPR2, but will now get a severe
error message:
01 CALLDN PIC AAAAABB.

MOVE "PROG1" TO CALLDN.
CALL CALLDN.
CANCEL CALLDN.

Chapter 9. Upgrading IBM COBOL source programs 125

IGYPA3063-S
"CALL" or "CANCEL" identifier "CALLDN (ALPHANUMERIC-EDITED)"
was not alphanumeric, zoned decimal nor alphabetic. The statement was
discarded.

To compile with Enterprise COBOL, change the definition of CALLDN to all
alphabetic or alphanumeric or add a new data-name that redefines CALLDN with
a valid data type as shown below.
01 CALLDN PIC A(7).

or
01 CALLDN PIC X(7).

or

01 CALLDN PIC AAAAABB
01 CALLDN1 REDEFINES CALLDN PIC A(7).

MOVE "PROG1" TO CALLDN1.
CALL CALLDN1.
CANCEL CALLDN1.

PROGRAM COLLATING SEQUENCE
The truth value of nonnumeric comparisons determined by the PROGRAM
COLLATING SEQUENCE clause might be different under CMPR2 and
NOCOMPR2.

CMPR2: The PROGRAM COLLATING SEQUENCE established in the OBJECT
COMPUTER paragraph is used to determine the truth value of any nonnumeric
comparisons that are:
v Explicitly specified in relation conditions
v Explicitly specified in condition-name conditions
v Implicitly performed as part of the execution of the SORT and MERGE

statements, unless overridden by the COLLATING SEQUENCE phrase on the
respective SORT or MERGE statement

v Implicitly performed as part of the execution of STRING, UNSTRING, and
INSPECT statements

NOCMPR2: The PROGRAM COLLATING SEQUENCE established in the
OBJECT COMPUTER paragraph is used to determine the truth value of any
nonnumeric comparisons that are:
v Explicitly specified in relation conditions
v Explicitly specified in condition-name conditions
v Implicitly performed as part of the execution of the SORT and MERGE

statements, unless overridden by the COLLATING SEQUENCE phrase on the
respective SORT or MERGE statement

The native collating sequence is used to determine the truth value of any nonnumeric
comparisons that are implicitly performed as part of the execution of STRING,
UNSTRING, and INSPECT statements.

For most applications, this difference will not affect the results of these statements.
The implicit comparisons performed as part of STRING, UNSTRING, and
INSPECT statements are always for equality. Therefore, even if the ordering of the
characters in the PROGRAM COLLATING SEQUENCE is different than that of the
native sequence, the results of these comparisons will be the same.

126 Enterprise COBOL for z/OS, V5.2 Migration Guide

For an application to be affected by this change, the PROGRAM COLLATING
SEQUENCE established in the OBJECT COMPUTER paragraph must identify an
alphabet that was defined with the ALSO clause, which assigns several different
characters to the same ordinal position.

Messages: Compiling the program with the CMPR2 and FLAGMIG options will
cause the compiler to issue messages for all statements that might be affected by
this change:

IGYPS3142-W
MIGR The "PROGRAM COLLATING SEQUENCE" will not affect the
"STRING" statement under the "NOCMPR2" compiler option.

Corrective action: No correction that is generally applicable exists for programs
receiving this message if the PROGRAM COLLATING SEQUENCE contains
multiple characters assigned to the same ordinal position.

The CMPR2 behavior of affected programs cannot be preserved without extensive
and complex recoding. Such programs must be rewritten to avoid this dependency
on the CMPR2 behavior.

READ INTO and RETURN INTO
READ (or RETURN) with the INTO phrase might be performed differently for
CMPR2 and NOCMPR2 for fixed-length files that have multiple 01-level record
descriptions in which at least one of the descriptions is numeric or numeric-edited.

When deciding which record description to use as the sending field for an implicit
MOVE statement, the compiler selects the longest of the 01 record descriptions. If
multiple record descriptions have the same length, then the first such record
description is chosen. This is true under both CMPR2 and NOCMPR2. However,
the method for determining which 01 record description is the longest is different.

CMPR2: Under CMPR2, the length of numeric and numeric-edited record
descriptions is calculated by totaling the number of digit positions in the
PICTURE. Other types of record descriptions are assigned a length equal to the
number of bytes occupied by the record description.

NOCMPR2: Under NOCMPR2, the length of each record description is
determined to be the number of bytes occupied by the record description,
regardless of whether the record description is numeric, numeric-edited, or
otherwise.

Messages: If the FLAGMIG and CMPR2 compiler options are used, a message
will be issued for any READ INTO or RETURN INTO statement that might be
affected.

A program that is affected by the rule change will receive the following message:

IGYPS2281-I
The "INTO" phrase of the "READ" or "RETURN" statement was specified
for fixed-format file "file-name", which contained multiple records. Record
"record-name" was selected as the sending field for the move.

This message will be issued under both the CMPR2 and NOCMPR2 compiler
options. Therefore, you can compile the program with CMPR2, and then with

Chapter 9. Upgrading IBM COBOL source programs 127

NOCMPR2, and examine the messages to determine whether the same record was
chosen under both CMPR2 and NOCMPR2. If so, then the program need not be
changed.

In addition, with the FLAGMIG compiler option, the following message will be
issued:

IGYPS2283-W
MIGR The "INTO" phrase of the "READ" or "RETURN" statement was
specified for file "file-name", which contained multiple records. A different
record might be selected for the sending field for the move under the
"NOCMPR2" compiler option.

Corrective action for the READ INTO and RETURN INTO phrases:: By
applying the record description rules to each qualified file or by checking the
messages, you can determine whether a different record description may be
selected under NOCMPR2 than under CMPR2. For example, consider the
following record descriptions:
01 RECORD-1 PIC X(9) USAGE DISPLAY.
01 RECORD-2 PIC 9(9) USAGE DISPLAY.

In this case, each record description is calculated to have a length of "9", under
both CMPR2 and NOCMPR2. Therefore, no incompatibility exists.

Suppose, however, that there is a difference in the way that the record description
lengths are calculated. Consider the following statements:
01 RECORD-3 PIC X(4) USAGE DISPLAY.
01 RECORD-4 PIC 9(9) USAGE COMP.

In this case, under NOCMPR2, each record description is calculated to have a
length of "4". However, under CMPR2, the length of the numeric record description
(RECORD-4) is calculated by counting digits, so its length will be "9" instead of "4".
Thus, RECORD-4 will be used as the sending field, even though the byte length of
each record description is 4.

After you have detected an incompatibility, change the code to ensure that the
CMPR2 behavior will be preserved. You can change the READ INTO or RETURN
INTO statement to a READ or RETURN statement, followed by a MOVE
statement. The MOVE statement would specify, as a sending field, the required
record description (the "longest" one), and, as a receiving field, the item that had
been specified as the INTO item.

RECORD CONTAINS n CHARACTERS
The definition of RECORD CONTAINS n CHARACTERS affects existing programs.

Its behavior is different under CMPR2 and NOCMPR2.

Consider the following example:
FD FILE1

RECORD CONTAINS 40.
01 F1R1 PIC X(20).
01 F1R2 PIC X(40).

FD FILE2
RECORD CONTAINS 20 TO 40.

01 F2R1 PIC X(20).
01 F2R2 PIC X(40).

128 Enterprise COBOL for z/OS, V5.2 Migration Guide

CMPR2: Under CMPR2, FILE1 and FILE2 have variable-length records.

NOCMPR2: Under NOCMPR2, FILE1 has fixed-length records and FILE2 has
variable-length records.

Message: Compiling the program with the CMPR2 and FLAGMIG options will
cause the compiler to issue the following message for FILE1:

IGYPS1183-W
MIGR "RECORD CONTAINS" clause with one integer specified is
supported differently under the "NOCMPR2" compiler option.

A program that has this difference might get a file status 39 on OPEN after
compiling with Enterprise COBOL.

Corrective action for the RECORD CONTAINS n CHARACTERS clause:: To
maintain current behavior, remove the RECORD CONTAINS clauses. This change
results in FILE1 and FILE2 both having variable-length records.

For maximum clarity, and for any new applications, use RECORD CONTAINS n
CHARACTERS for fixed-length records and RECORD IS VARYING FROM
integer-1 TO integer-2 for variable-length records. Avoid using RECORD
CONTAINS n1 TO n2 CHARACTERS.

SET . . . TO TRUE
SET ... TO TRUE has different effects depending on whether CMPR2 or NOCMPR2
is in effect.

CMPR2: The SET ... TO TRUE statement is performed according to the rules of
the MOVE statement.

NOCMPR2: Under NOCMPR2, SET ... TO TRUE follows the rules of the VALUE
clause. There are three instances in which this change can cause different results:
v When the data item is described by a JUSTIFIED clause
v When the data item is described by a BLANK WHEN ZERO clause
v When the data item has editing symbols in its PICTURE string

Message: A program that is potentially affected by this change will receive the
following message when compiled with the CMPR2 and FLAGMIG options:

IGYPS2219-W
MIGR The "SET" statement with the "TO TRUE" phrase will be
performed according to the rules for the "VALUE" clause under the
"NOCMPR2" compiler option.

JUSTIFIED clause: When a data item described by a JUSTIFIED clause is the
receiving item in a MOVE statement, the sending data is aligned at the rightmost
character position in the receiving item. In a VALUE clause, initialization is not
affected by the JUSTIFIED clause. This means that the data in a VALUE clause will
be aligned at the leftmost character position in the receiving item.

Here's how it works under CMPR2:
01 A PIC X(3) JUSTIFIED RIGHT VALUE "a". (Result = "a ")

88 V VALUE "a".

SET V TO TRUE (Result = " a")
MOVE "a" TO A (Result = " a")

Chapter 9. Upgrading IBM COBOL source programs 129

Here's how it works under NOCMPR2:
01 A PIC X(3) JUSTIFIED RIGHT VALUE "a". (Result = "a ")

88 V VALUE "a".
SET V TO TRUE (Result = "a ")

MOVE "a" TO A (Result = " a")

Corrective action for the JUSTIFIED clause: If using NOCMPR2, and you want
the same behavior as with CMPR2, adjust the data in the VALUE clause for the
88-level item accordingly:
01 A PIC X(3) JUSTIFIED RIGHT VALUE "a". (Result = "a ")

88 V VALUE " a".

SET V TO TRUE (Result = " a")
MOVE "a" TO A (Result = " a")

BLANK WHEN ZERO clause: When a data item described by a BLANK WHEN
ZERO clause receives the value of zero in a MOVE statement, the item will contain
nothing but spaces. In a VALUE clause, initialization is not affected by the BLANK
WHEN ZERO clause. This means that if the VALUE clause specifies a value of
zero, the data will be placed into the item as is, and the item will contain all zeros
instead of spaces.

Here's how it works under CMPR2:
01 N PIC 9(3) BLANK WHEN ZERO VALUE ZERO. (Result = "000")

88 V VALUE ZERO.

SET V TO TRUE (Result = " ")
MOVE ZERO TO N (Result = " ")

Here's how it works under NOCMPR2:
01 N PIC 9(3) BLANK WHEN ZERO VALUE ZERO. (Result = "000")

88 V VALUE ZERO.
SET V TO TRUE (Result = "000")

MOVE ZERO TO N (Result = " ")

If the behavior exhibited under CMPR2 is required under NOCMPR2, the data in
the VALUE clause for the 88-level item must be adjusted accordingly:
01 N PIC 9(3) BLANK WHEN ZERO VALUE ZERO. (Result = "000")

88 V VALUE " ".

SET V TO TRUE (Result = " ")
MOVE ZERO TO N (Result = " ")

PICTURE string with editing symbols: When a data item contains editing
symbols in its PICTURE string, the character positions represented by those
symbols will contain editing characters when data is moved into the data item. In
a VALUE clause, initialization is not affected by the editing symbols. This means
that the data in the VALUE clause will be placed into the item as is, and editing
will not take place as it does in the MOVE statement.

Here's how it works under CMPR2:
01 E PIC X/X VALUE SPACE. (Result = " ")

88 V VALUE SPACE.

SET V TO TRUE (Result = " / ")
MOVE SPACE TO E (Result = " / ")

130 Enterprise COBOL for z/OS, V5.2 Migration Guide

Here's how it works under NOCMPR2:
01 E PIC X/X VALUE SPACE. (Result = " ")

88 V VALUE SPACE.
SET V TO TRUE (Result = " ")

MOVE SPACE TO E (Result = " / ")

If the behavior exhibited under CMPR2 is required under NOCMPR2, the data in
the VALUE clause for the 88-level item must be specified in edited form:
01 E PIC X/X VALUE SPACE. (Result = " ")

88 V VALUE " / ".

SET V TO TRUE (Result = " / ")
MOVE SPACE TO E (Result = " / ")

SIZE ERROR on MULTIPLY and DIVIDE
SIZE ERROR behaves differently depending on whether CMPR2 or NOCMPR2 is
in effect.

The 74 COBOL Standard and the 85 COBOL Standard state that an intermediate
result will be provided by the implementer when a COMPUTE, DIVIDE, or
MULTIPLY statement has multiple receiving fields. For example: MULTIPLY A BY B
GIVING C D should behave like:
MULTIPLY A BY B GIVING temp
MOVE temp TO C
MOVE temp TO D

where temp is an intermediate result provided by the implementer.

The Enterprise COBOL Programming Guide describes the use and definition of
intermediate results. One such definition says that an intermediate result will have
at most 30-digits (31-digits with ARITH(EXTEND)).

So, in the example above, if A, B, C, and D are all defined as PIC S9(18), A will be
multiplied by B, yielding a 36-digit result, which will be moved to the 30-digit (or
31-digit) intermediate result, temp. Then temp will be moved to C and D.

CMPR2: When SIZE ERROR is specified on the MULTIPLY statement example,
SIZE ERROR can occur when the 36-digit (immediate) result is moved into the
30-digit (or 31-digit) (intermediate) result, according to the 74 COBOL Standard
rules. This differs from the corresponding COMPUTE case, in which SIZE ERROR
cannot occur when the 36-digit (immediate) result is moved into the 30-digit (or
31-digit) (intermediate) result.
COMPUTE C D = A * B ON SIZE ERROR...

This behavior applies to the DIVIDE statement with its corresponding COMPUTE
statement as well.

NOCMPR2: However, under NOCMPR2, SIZE ERROR applies only to final
results. In the MULTIPLY example, SIZE ERROR cannot occur when the 36-digit
(immediate) result is moved into the 30-digit (or 31-digit) (intermediate) result.
Consequently, the MULTIPLY and COMPUTE statements become equivalent in this
regard. This behavior also applies to the DIVIDE statement.

Such statements will now be flagged by the following compiler message:

Chapter 9. Upgrading IBM COBOL source programs 131

IGYPG3113-W
Truncation of high-order digit positions can occur due to precision of
intermediate results exceeding 30-digits.

If, at run time, truncation actually does occur, the following message will be
issued:

IGZ0036W
Truncation of high order digit positions occurred in program
"program-name" on line number "n".

Message: A program that is potentially affected by this change will receive the
following message when compiled with the CMPR2 and the FLAGMIG options:

IGYPG3204-W
MIGR The "ON SIZE ERROR" phrase will not be executed for
intermediate results under the "NOCMPR2" compiler option.

Corrective action for the SIZE ERROR on MULTIPLY and DIVIDE:: The
CMPR2 behavior of affected programs cannot be preserved without extensive and
complex recoding. Such programs must be rewritten to avoid this dependency on
the CMPR2 behavior.

UNSTRING operand evaluation
Subscripting, indexing, and length calculation associated with the UNSTRING
statement might generate different results depending on whether CMPR2 or
NOCMPR2 is in effect.

In the description below, the following general format of the UNSTRING statement
is used for reference:
UNSTRING id-1

DELIMITED BY id-2 OR id-3 ...
INTO id-4 DELIMITER IN id-5 COUNT IN id-6

id-7 DELIMITER IN id-8 COUNT IN id-9
WITH POINTER id-10
TALLYING IN id-11
ON OVERFLOW imp-stmt-1
NOT ON OVERFLOW imp-stmt-2
END-UNSTRING

CMPR2: Under CMPR2, any subscripting, indexing, or length calculation
associated with id-1, id-10, and id-11 is to be evaluated only once, at the beginning
of execution of the UNSTRING statement. However, any subscripting, indexing, or
length calculation associated with id-2, id-3, id-4, id-5, id-6, id-7, id-8, and id-9, (or
any repetitions) is to be evaluated immediately before transfer into the respective
data item.

NOCMPR2: Under NOCMPR2, any subscripting, indexing, or length calculation
associated with any of id-1 through id-11 (or any repetitions) is to be evaluated
only once, at the beginning of execution of the UNSTRING statement. This change
can lead to different results when certain dependencies exist between id-2 through
id-9.

Dependencies involving identifiers id-1, id-10, and id-11 are not affected by this
change.

Messages: Most of the UNSTRING statements flagged with messages 3211
through 3214 will generate identical results. Only certain dependencies between the
operands in the UNSTRING statement will generate different results.

132 Enterprise COBOL for z/OS, V5.2 Migration Guide

For example, a dependency can exist between two operands (op-1 and op-2) in an
UNSTRING statement in the following ways:
1. op-1 is subscripted, and the subscript value is modified by op-2:

a. The subscript identifier is used as a receiver in an INTO, DELIMITER IN, or
COUNT IN operand.

b. The subscript identifier is a variably located item, and an ODO object
affecting the location of this item is used as a receiver in an INTO,
DELIMITER IN, or COUNT IN operand.

2. op-1 is a variable-length group item, and an ODO object affecting the length of
this group is modified by op-2:
a. The ODO object is used as a receiver in an INTO, DELIMITER IN, or

COUNT IN operand.
3. op-1 is a variably located item, and an ODO object affecting the location of this

item is modified by op-2:
a. The ODO object is used as a receiver in an INTO, DELIMITER IN, or

COUNT IN operand.

Dependencies generated by overlapping operands, or by specifying the same
identifier as a DELIMITED BY operand and as one of the sending, INTO, or
DELIMITER IN operands are illegal under both Standard COBOL 74 and 85
COBOL Standard and are not addressed here. Generally, results will be
unpredictable.

Compiling the program with the CMPR2 and FLAGMIG options causes the
compiler to issue messages for all UNSTRING statements that might contain such
dependencies.

Any UNSTRING statements not flagged with one of these messages will generate
identical results under CMPR2 and NOCMPR2.

All UNSTRING statements flagged with message 2222 will require changes to
guarantee identical results.

Corrective action for the UNSTRING OPERAND evaluation:: The individual
cases requiring changes are detailed below in order by message number, and with
examples illustrating the dependencies and the suggested changes. Only the
essential program fragments are included in the examples.

IGYPS2222-W
This message will be issued if one of the "receiver" identifiers in the
UNSTRING statement refers to a variable-length group item that contains
its own ODO object. Due to the syntax rules and restrictions applying to
all UNSTRING statements, this situation can occur only for id-2, id-3, id-4,
id-5, id-7, and id-8 (or repetitions).

For example:
01 VLG-1.
02 VLG-1-ODOOBJ PIC 9 VALUE IS 5.
02 VLG-1-GR.
03 VLG-1-ODO PIC X OCCURS 1 TO 9 TIMES

DEPENDING ON VLG-1-ODOOBJ.
77 S-1 PIC X(20) VALUE IS ALL "123456789".

UNSTRING S-1
INTO VLG-1
END-UNSTRING

Chapter 9. Upgrading IBM COBOL source programs 133

IGYPS2222-W
MIGR The maximum length of receiver "vlg-1" will be used
under the "NOCMPR2" compiler option.

Enterprise COBOL will use the maximum length of vlg-1 to determine
both the amount of data extracted from sending item s-1 and the length of
the receiving area vlg-1.

Regardless of which identifier is flagged with message 2222, you must
replace the identifier with a reference modified version, as in the following
example:
UNSTRING S-1

INTO VLG-1(1:LENGTH OF VLG-1)
END-UNSTRING

This form forces the actual length of vlg-1 at the beginning of the
UNSTRING statement to be used.

This correction is not affected by the presence of any of the optional
phrases of the UNSTRING statement (DELIMITED BY, WITH POINTER,
ON OVERFLOW) and it applies equally to all flagged identifiers in any
one UNSTRING statement.

IGYPA3211-W
This message will be issued if one of the "DELIMITED BY" identifiers in
the UNSTRING statement is subscripted, refers to a variable-length group
item, or refers to a variably located item.

For an UNSTRING statement to be affected by this change, the flagged
DELIMITED BY operand must depend on one of the INTO receivers.

For example:
01 DEL
02 OCC-DEL-1 PIC X OCCURS 9 TIMES.
02 VLEN-DEL-2-ODOOBJ PIC 9 VALUE IS 5.
02 VLEN-DEL-2.
03 VLEN-DEL-2-ODO PIC X OCCURS 1 TO 9 TIMES

DEPENDING ON VLEN-DEL-2-ODOOBJ.

77 S-1 PIC X(20) VALUE IS ALL "123456789".
77 R-1 PIC X(20) VALUE IS SPACES.
77 R-2 PIC X(20) VALUE IS SPACES.
77 SUB-5 PIC 99 VALUE IS 5.

UNSTRING S-1
DELIMITED BY OCC-DEL-1(SUB-5) OR VLEN-DEL-2,
INTO R-1 DELIMITER IN OCC-DEL-1(SUB-5 + 1)

COUNT IN VLEN-DEL-2-ODOOBJ,
R-2,

END-UNSTRING

IGYPA3211-W
MIGR In this "UNSTRING" statement, the subscript or
"OCCURS DEPENDING ON" calculations for the "DELIMITED BY"
operand will be done only once under the "NOCMPR2" compiler
option.

No corrections are required for items flagged with message 3211.

IGYPA3212-W
This message will be issued if one of the INTO identifiers in the
UNSTRING statement is subscripted, refers to a variable-length group
item, or refers to a variably located item.

134 Enterprise COBOL for z/OS, V5.2 Migration Guide

For an UNSTRING statement to be affected by this change, the flagged
INTO identifier must depend on one of the receivers in a preceding INTO
phrase.

For example:
01 REC.
02 R-1 PIC X(20) VALUE IS SPACES.
02 R-2-SUB PIC 9 VALUE IS 9.
02 OCC-R-2-GR.
03 OCC-R-2 PIC X OCCURS 9 TIMES.
02 R-3-ODOOBJ PIC 9 VALUE IS 9.
02 ODO-R-3.
03 FILLER PIC X OCCURS 1 TO 9 TIMES

DEPENDING ON R-3-ODOOBJ.

77 S-3 PIC X(20) VALUE IS "12 345 6789".

UNSTRING S-3
DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN R-2-SUB,

OCC-R-2(R-2-SUB) COUNT IN R-3-ODOOBJ,
ODO-R-3,

END-UNSTRING

IGYPA3212-W
MIGR In this "UNSTRING" statement, the subscript or
"OCCURS DEPENDING ON" calculations for the "INTO" operand
will be done only once under the "NOCMPR2" compiler option.

This UNSTRING statement will generate different results under CMPR2
and NOCMPR2 because the subscript of the second INTO receiver is
modified by the COUNT IN receiver of the first INTO phrase. In addition,
the length of the third INTO receiver is modified by the COUNT IN
receiver of the second INTO phrase.

Under CMPR2, the values that are moved to the COUNT IN identifiers
will be used for the subsequent INTO phrases. Under NOCMPR2, the
values in effect at the beginning of the execution of the UNSTRING
statement will be used for all INTO phrases.

Any UNSTRING statement flagged with message 3212 must be broken into
multiple UNSTRING statements. A separate UNSTRING statement must be
used for each dependent INTO phrase. However, be aware of the following
rules:
v If the original UNSTRING statement specified a WITH POINTER phrase,

that phrase must be included in all of the changed UNSTRING
statements. If the original UNSTRING statement did not specify a WITH
POINTER phrase, that phrase must be added to all the changed
UNSTRING statements, and the POINTER identifier must be initialized
to 1.

v If the original UNSTRING statement specified a TALLYING IN phrase,
that phrase must be included in all of the changed UNSTRING
statements.

v If the original UNSTRING statement specified the ON OVERFLOW or
NOT ON OVERFLOW phrases, those phrases must be included only in
the last of the changed UNSTRING statements.

With these changes, the previous example becomes:
77 PTR PIC 99.

MOVE 1 TO PTR

Chapter 9. Upgrading IBM COBOL source programs 135

UNSTRING S-3
DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN R-2-SUB,
WITH POINTER PTR,
END-UNSTRING

UNSTRING S-3
DELIMITED BY ALL SPACES,
INTO OCC-R-2(R-2-SUB) COUNT IN R-3-ODOOBJ,
WITH POINTER PTR,
END-UNSTRING

UNSTRING S-3
DELIMITED BY ALL SPACES,
INTO ODO-R-3,
WITH POINTER PTR,
END-UNSTRING

IGYPA3213-W
This message will be issued if one of the DELIMITER IN identifiers in the
UNSTRING statement is subscripted, refers to a variable-length group
item, or refers to a variably located item.

For an UNSTRING statement to be affected by this change, the flagged
DELIMITER IN identifier must depend on one of the receivers in a
preceding INTO phrase.

Dependencies between identifiers in the same INTO phrase will not affect
the result of the UNSTRING statement. CMPR2 behavior delays the effects
of these dependencies until the next INTO phrase.

For example:
01 DEL.
02 D-2-SUB PIC 9 VALUE IS 9.
02 OCC-D-2-GR.
03 OCC-D-2 PIC X OCCURS 9 TIMES.
02 D-3-ODOOBJ PIC 9 VALUE IS 9.
02 ODO-D-3.
03 FILLER PIC X OCCURS 1 TO 9 TIMES

DEPENDING ON D-3-ODOOBJ.

77 S-4 PIC X(20) VALUE IS "12 345 6789".
77 R-1 PIC X(20) VALUE IS SPACES.
77 R-2 PIC X(20) VALUE IS SPACES.
77 R-3 PIC X(20) VALUE IS SPACES.

UNSTRING S-4
DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN D-2-SUB,

R-2 DELIMITER IN OCC-D-2(D-2-SUB)
COUNT IN D-3-ODOOBJ,

R-3 DELIMITER IN ODO-D-3,
END-UNSTRING

IGYPA3213-W
MIGR In this "UNSTRING" statement, the subscript or
"OCCURS DEPENDING ON" calculations for the "DELIMITER IN"
operand will be done only once under the "NOCMPR2" compiler
option.

This UNSTRING statement will generate different results under CMPR2
and NOCMPR2 because the subscript of the DELIMITER IN identifier of
the second INTO phrase is modified by the COUNT IN receiver of the first
INTO phrase. In addition, the length of the DELIMITER IN identifier of the
third INTO phrase is modified by the COUNT IN receiver of the second
INTO phrase.

136 Enterprise COBOL for z/OS, V5.2 Migration Guide

With CMPR2 behavior, the values that are moved to the COUNT IN
identifiers will be used for the subsequent INTO phrases. With NOCMPR2,
the values in effect at the beginning of the execution of the UNSTRING
statement will be used for all INTO phrases.

Any UNSTRING statement flagged with message 3213 must be broken into
multiple UNSTRING statements; a separate UNSTRING statement must be
used for each dependent INTO phrase.

With these changes, the previous example becomes:
77 PTR PIC 99.

MOVE 1 TO PTR
UNSTRING S-4

DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN D-2-SUB,
WITH POINTER PTR,
END-UNSTRING

UNSTRING S-4
DELIMITED BY ALL SPACES,
INTO R-2 DELIMITER IN OCC-D-2(D-2-SUB)

COUNT IN D-3-ODOOBJ,
WITH POINTER PTR,
END-UNSTRING

UNSTRING S-4
DELIMITED BY ALL SPACES,
INTO R-3 DELIMITER IN ODO-D-3,
WITH POINTER PTR,
END-UNSTRING

IGYPA3214-W
This message will be issued if one of the COUNT IN identifiers in the
UNSTRING statement is subscripted or refers to a variably located item.

For an UNSTRING statement to be affected by this change, the flagged
COUNT IN identifier must depend on one of the receivers in a preceding
INTO phrase.

Dependencies between identifiers in the same INTO phrase will not affect
the result of the UNSTRING statement; CMPR2 behavior delays the effects
of these dependencies to the next INTO phrase.

For example:
01 C-2.
02 C-2-SUB PIC 9 VALUE IS 9.
02 OCC-C-2-GR.
03 OCC-C-2 PIC 9 OCCURS 9 TIMES.

77 S-5 PIC X(20) VALUE IS "12 345 6789........".
77 R-1 PIC X(20) VALUE IS SPACES.
77 R-2 PIC X(20) VALUE IS SPACES.

UNSTRING S-5
DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN C-2-SUB,

R-2 COUNT IN OCC-C-2(C-2-SUB),
END-UNSTRING

IGYPA3214-W
MIGR In this "UNSTRING" statement, the subscript or
"OCCURS DEPENDING ON" calculations for the "COUNT IN"
operand will be done only once under the "NOCMPR2" compiler
option.

Chapter 9. Upgrading IBM COBOL source programs 137

This UNSTRING statement will generate different results under CMPR2
and NOCMPR2 because the subscript of the COUNT IN identifier of the
second INTO phrase is modified by the COUNT IN receiver of the first
INTO phrase.

With CMPR2 behavior, the values that are moved to the COUNT IN
identifier in the first INTO phrase will be used for the second INTO
phrase. With NOCMPR2, the value in effect at the beginning of execution
of the UNSTRING statement will be used.

Any UNSTRING statement flagged with message 3214 must be broken into
multiple UNSTRING statements; a separate UNSTRING statement must be
used for each dependent INTO phrase.

With these changes, the example above becomes:
77 PTR PIC 99.

MOVE 1 TO PTR
UNSTRING S-5

DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN C-2-SUB,
WITH POINTER PTR,
END-UNSTRING

UNSTRING S-5
DELIMITED BY ALL SPACES,
INTO R-2 COUNT IN OCC-C-2(C-2-SUB),
WITH POINTER PTR,
END-UNSTRING

UPSI switches
Condition-names for the UPSI switches must be defined and referenced differently
depending on whether CMPR2 or NOCMPR2 is in effect.

CMPR2: UPSI switches can be defined by specifying condition-names for the ON
and OFF settings of the switch. Under CMPR2, the condition-names for all UPSI
switches, UPSI-0 through UPSI-7, can be defined with the same names, as follows:
SPECIAL-NAMES.

UPSI-0 ON STATUS IS T OFF STATUS IS F
UPSI-1 ON STATUS IS T OFF STATUS IS F...
UPSI-7 ON STATUS IS T OFF STATUS IS F

References to the names could be qualified with the UPSI name, as follows:
IF T OF UPSI-0 DISPLAY "UPSI-0".
IF T OF UPSI-1 DISPLAY "UPSI-1"....
IF T OF UPSI-7 DISPLAY "UPSI-7".

NOCMPR2: The names of the UPSI switches, UPSI-0 through UPSI-7, can no
longer be referenced in the PROCEDURE DIVISION under NOCMPR2. The
statements above will now be flagged with a message of the following format:

IGYPS2121-S
"T OF UPSI-0" was not defined as a data-name. The statement was
discarded.

Message: Using CMPR2 and FLAGMIG, any PROCEDURE DIVISION statement
that references an UPSI switch by name will be flagged with the following
message:

138 Enterprise COBOL for z/OS, V5.2 Migration Guide

IGYPS0186-W
MIGR UPSI switches cannot be referenced directly in the PROCEDURE
DIVISION under the "NOCMPR2" compiler option.

Corrective action for UPSI switches:: Programs will have to be changed to define
unique condition-names, as follows:
SPECIAL-NAMES.

UPSI-0 ON STATUS IS T0 OFF STATUS IS F0
UPSI-1 ON STATUS IS T1 OFF STATUS IS F1...
UPSI-7 ON STATUS IS T7 OFF STATUS IS F7

and to reference the new condition-names, as follows:
IF T0 DISPLAY "UPSI-0".
IF T1 DISPLAY "UPSI-1"....
IF T7 DISPLAY "UPSI-7".

Variable-length group moves
The calculation of the length of a sending or receiving ODO object can vary
depending on whether CMPR2 or NOCMPR2 is in effect.

CMPR2: All ODO objects in sending and receiving fields involved in a group
move, such as a MOVE statement, must be set before the statement is executed.
The actual lengths of the sender and receiver are calculated just before the
execution of the data movement statement. For a list of affected verbs, see the
message below.

NOCMPR2: In some cases, NOCMPR2 uses the maximum length of a
variable-length group when it is a receiver, whereas CMPR2 uses the actual length.
This behavior occurs when the receiver is variable length, contains its own ODO
object, and is the last group in a structure. For example:
01 ODO-SENDER

02 SEND-OBJ PIC 99.
02 SEND-ITEM PIC X OCCURS 1 TO 20 DEPENDING ON SEND-OBJ.

01 ODO-RECEIVER.
02 RECV-OBJ PIC 99.
02 RECV-ITEM PIC X OCCURS 1 TO 20 DEPENDING ON RECV-OBJ....

MOVE 5 TO SEND-OBJ.
MOVE 10 TO RECV-OBJ.
MOVE ODO-SENDER TO ODO-RECEIVER....
CMPR2:

Occurrences 1-5 of ODO-SENDER moved to ODO-RECEIVER.
Occurrences 6-10 of ODO-RECEIVER become spaces.
Occurrences 11-20 of ODO-RECEIVER are unchanged.

NOCMPR2:
Occurrences 1-5 of ODO-SENDER moved to ODO-RECEIVER.
Occurrences 6-20 of ODO-RECEIVER become spaces.

The programs that will have negative effects if used under NOCMPR2 are those
that reference occurrences of the table that are beyond the value of the ODO object
when a data movement statement was executed.

In the example above, if occurrences 11-20 have data in them before the group
move, that data will be lost after the group move if run under NOCMPR2.

Chapter 9. Upgrading IBM COBOL source programs 139

Message: Compiling the program with the CMPR2 and FLAGMIG compiler
options generates the following message for each data movement statement that
will behave differently under NOCMPR2:

IGYPS2222-W
MIGR The maximum length of receiver "ODO-RECEIVER" will be used
under the "NOCMPR2" compiler option.

This difference in variable-length group moves affects any verb that moves data.
The affected verbs are:

ACCEPT identifier (Format 1 or Format 2)
MOVE . . . TO identifier
READ . . . INTO identifier
RELEASE identifier FROM . . .
RETURN . . . INTO identifier
REWRITE identifier FROM . . .
STRING . . . INTO identifier
UNSTRING . . . INTO identifier DELIMITER IN identifier
WRITE identifier FROM . . .

Corrective action for variable-length group moves:: You can take the following
steps:
v See if any of your COBOL programs have the variable-length data movement

statements by compiling them with the CMPR2 and FLAGMIG compiler
options. This completion will flag all variable-length group moves with receivers
that contain their own ODO objects and are not complex ODO items.

v See if any data that was previously left unchanged and is now being set to
blanks is referenced after the data movement statements. In the example, if the
ODO object has a value of 5 and a maximum value of 10 and the code uses data
in occurrence numbers 6 through 10 after the MOVE, then the program will
have different results between CMPR2 and NOCMPR2.

v Change the receiver in the data movement statement to use reference
modification to specify explicitly the length of the receiving field. For example:
MOVE ODO-SENDER TO ODO-RECEIVER (1:LENGTH OF ODO-RECEIVER).

Upgrading SOM-based object-oriented (OO) COBOL programs
SOM-based object-oriented COBOL applications are not supported with Enterprise
COBOL. OO COBOL syntax has been retargeted for Java-based object-oriented
programming to facilitate interoperation of COBOL and Java.

The Java-based OO COBOL is not compatible with SOM-based OO COBOL, and is
not intended as a migration path for OO COBOL programs. In most cases you
should rewrite your OO COBOL into procedural COBOL in order to use the
Enterprise COBOL compiler. It is possible that you could use the new OO COBOL
syntax in place of your existing SOM-based OO syntax, but it is not a
straightforward conversion.

For more information about the considerations that apply when you upgrade your
IBM COBOL programs that contain SOM-based OO COBOL statements to
Enterprise COBOL, see “SOM-based OO COBOL language elements that are not
supported” on page 141 and “SOM-based OO COBOL language elements that are
changed” on page 141.

140 Enterprise COBOL for z/OS, V5.2 Migration Guide

SOM-based OO COBOL language elements that are not
supported

When you migrate COBOL applications that use SOM-based OO programming to
the Java-based OO programming in Enterprise COBOL, be aware of the following
SOM elements that are not supported.

Calls to SOM
Calls to SOM services are not supported.

INHERITS clause

v Specification of more than one class name on the INHERITS clause of
the CLASS-ID paragraph (multiple inheritance) is not supported.

v COBOL classes must be ultimately derived from the java.lang.Object
class (rather than SOMObject or SOMClass). Specification of SOMObject
as a base class in the INHERITS clause is not supported.

v Specification of SOMClass as a base class in the INHERITS clause
(defining metaclasses) is not supported. Java-based OO COBOL classes
can specify a FACTORY section, defining static methods that are
logically part of the class-object for the class.

INVOKE

v Argument lists on INVOKE statements and parameter lists for methods
are restricted to data types that map to Java types and that are passed
BY VALUE.

v Specification of a class-name that qualifies SUPER in the INVOKE
statement is not supported. For example you cannot use:
INVOKE C OF SUPER "foo"

However, the following syntax continues to be supported in Enterprise
COBOL:
INVOKE SUPER "foo"

METACLASS clauses

v The METACLASS IS clause of the CLASS-ID paragraph is not supported.
v The METACLASS OF clause from the USAGE clause, which defines

object references, is not supported.

METHODS

v The OVERRIDE clause of the METHOD-ID paragraph is not supported.
v Use of methods from SOM base classes such as somNew, somFree, and

somInit are not supported.

Compiler options IDLGEN and TYPECHK
The IDLGEN and TYPECHK options are not available. Both compiler options
require SOM-based OO COBOL, which is not available with Enterprise COBOL.

SOM-based OO COBOL language elements that are changed
When you migrate applications that use SOM-based OO programming to the
Java-based OO programming in Enterprise COBOL, be aware of the following
elements that are changed in Enterprise COBOL.

External names

v External class names that are defined in the REPOSITORY paragraph
must be defined with Java naming conventions for fully qualified class
names, rather than the CORBA rules of formation for class names.

Chapter 9. Upgrading IBM COBOL source programs 141

v Method names that are specified as literals use Java naming conventions
rather than CORBA naming conventions.

INVOKE
Instead of somNew, object instances are created with the syntax:
INVOKE classname NEW ...

METHODS
COBOL methods can override inherited methods and can be overloaded,
according to Java rules. However, the OVERRIDE clause is not required or
supported on the METHOD-ID paragraph in these cases.

OBJECTS

v Instead of somNew, object instances are created with the syntax:
INVOKE classname NEW ...

v Object instances are freed through Java automatic garbage collection,
rather than somFree.

v Object instance data is initialized through VALUE clauses or user-written
initialization methods, rather than with somInit.

v OBJECT and END OBJECT syntax must be specified unless the class
does not specify any object instance data or object instance methods.

142 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 10. Compiling IBM COBOL programs

This section contains information about the following topics:
v Default compiler option changes from IBM COBOL
v Compiler options for IBM COBOL programs
v Compiler options not available in Enterprise COBOL

Information specific to IBM COBOL or Enterprise COBOL is noted.

Default compiler options for IBM COBOL programs
The Enterprise COBOL compiler has slightly different default compiler options
than IBM COBOL. The compiler options DBCS, FLAG(I,I), RENT, and XREF(FULL)
are now default values in the product configuration that is shipped from IBM. The
default values for IBM COBOL were NODBCS, FLAG(I), NORENT, and NOXREF.

The DBCS option might cause problems for CICS programs if you are using the
COBOL2 CICS translator option. The fix is to use the COBOL3 translator option.

Compiler options for IBM COBOL programs
The Enterprise COBOL and IBM COBOL compilers are very similar. If you will be
using the same compiler options that were used in your current IBM COBOL
applications, some internal changes might take effect, but basically the behavior is
unchanged.

If you do change compiler options settings from the settings you used with IBM
COBOL applications, make sure you understand the possible effects on your
applications. For information about other compiler options, see the Enterprise
COBOL Programming Guide.

There are some new compiler options in Enterprise COBOL compared to compiler
options in IBM COBOL. Table 24 lists the options that affect compatibility between
IBM COBOL and Enterprise COBOL.

Table 24. Compiler options for IBM COBOL programs

Compiler option Comments

ARITH Use ARITH(COMPAT) to get the same results as COBOL/370,
Release 1, thru COBOL for OS/390 & VM, Version 2 Release 1
for intermediate results in arithmetic statements.

© Copyright IBM Corp. 1991, 2019 143

Table 24. Compiler options for IBM COBOL programs (continued)

Compiler option Comments

INTDATE Use INTDATE(ANSI) to get the same results as COBOL/370,
Release 1 for date intrinsic functions. Use INTDATE(LILIAN) if
you store integer values and will be using other languages with
the same data. INTDATE(LILIAN) will cause the date intrinsic
functions to use the Language Environment start date, which is
the same starting date that would be used by PL/I or C
programs that use Language Environment date callable services.

If integer dates are used only within a single program, such as
converting Gregorian to Lilian and back to Gregorian in the
same program, the setting of INTDATE is immaterial.

If you choose INTDATE(LILIAN) as your installation default,
you should recompile all of your COBOL/370, Release 1
programs (and any IBM COBOL programs that used
INTDATE(ANSI)) that use intrinsic functions to ensure that all
of your code uses the Lilian integer date standard. This method
is the safest, because you can store integer dates and pass them
between programs, even between PL/I, COBOL, and C
programs, and know that the date processing will be consistent.

PGMNAME Use PGMNAME(COMPAT) to ensure that program names are
processed in a manner similar to COBOL/370, Release 1.

NSYMBOL Controls the interpretation of the "N" symbol used on literals
and PICTURE clauses, indicating whether national or DBCS
processing is assumed.

NSYMBOL(DBCS) provides compatibility with previous releases
of IBM COBOL and VS COBOL II.

TRUNC In releases of COBOL for OS/390 & VM prior to Version 2
Release 2, unsigned binary data items with TRUNC(BIN) were
correctly supported only when the binary value contained at
most 15 bits for halfwords, 31 bits for fullwords, or 63 bits for
doublewords. In other words, the sign bit was not used as part
of the numeric value when the data item was unsigned. With
Enterprise COBOL and COBOL for OS/390 & VM, Version 2
Release 2, all 16 bits of a halfword, all 32 bits of a fullword, and
all 64 bits of a doubleword can be used as part of the numeric
value of an unsigned COMP-5 data item or an unsigned binary
data item with TRUNC(BIN).

For example, in a program compiled with TRUNC(BIN), a data
item declared like this

01 X pic 9(2) binary.

correctly supported binary values from 0 through only 32767 in
prior releases, but with Version 2 Release 2 now supports values
of 0 through 65535.

This support necessarily yields different arithmetic results than
were obtained with the prior releases, if these very large
unsigned binary values were inadvertently used.

144 Enterprise COBOL for z/OS, V5.2 Migration Guide

Compiler options not available in Enterprise COBOL
Most compiler options that are available in IBM COBOL can be used when you
compile with Enterprise COBOL except for the following compiler options:

Table 25. Compiler options not available in Enterprise COBOL

Compiler option Comments

ANALYZE The ANALYZE option is not available with Enterprise COBOL. Use the
CICS, SQL, and ADATA options instead.

CMPR2 The CMPR2 option is not available. You must convert programs
compiled with CMPR2 to 85 COBOL Standard to compile them with
Enterprise COBOL

EVENTS The EVENTS option is not available. To emulate the COBOL/370
EVENTS compiler option:

1. Specify the ADATA compiler option.

2. Allocate SYSADATA and SYSEVENTS.

3. Use the ADEXIT suboption of the EXIT compiler option with the
sample exit program IGYADXIT.

FLAGMIG The FLAGMIG option is not available. FLAGMIG requires CMPR2,
which is not available with Enterprise COBOL. Use CCCA, this
Migration Guide, or a compiler released prior to Enterprise COBOL to
compile programs using FLAGMIG.

IDLGEN The IDLGEN option is not available. IDLGEN requires SOM-based OO
COBOL, which is not available with Enterprise COBOL.

NUMPROC(MIG) NUMPROC(PFD) and NUMPROC(NOPFD) are still available. If
NUMPROC(MIG) is specified, Enterprise COBOL issues a warning
message and the compilation will get the default setting for
NUMPROC. This is either the user-customized default or the IBM
default, which is NUMPROC(NOPFD).

To migrate your programs compiled with NUMPROC(MIG) to
Enterprise COBOL V5.2, consider using the NUMCHECK compiler
option to help you migrate to NUMPROC(PFD):

1. Compile your programs with NUMCHECK(ZON,PAC) and
NUMPROC(PFD).

2. Run a thorough regression test with a good breadth of input data.

If your applications get no NUMCHECK messages or NUMCHECK
abends, you can safely compile with NUMPROC(PFD) and
NONUMCHECK for production. This will not only solve the invalid
data problem, but NUMPROC(PFD) is the most efficient setting for the
NUMPROC compiler option.

NUMCHECK is introduced in Enterprise COBOL V5.2 with PTF for
APAR PI81006 installed. For details, see NUMCHECK in the Enterprise
COBOL Programming Guide.

TYPECHK The TYPECHK option is not available. TYPECHK requires SOM-based
OO COBOL, which is not available with Enterprise COBOL.

Chapter 10. Compiling IBM COBOL programs 145

|
|
|

|
|

|

|
|
|
|
|

|
|
|

Table 25. Compiler options not available in Enterprise COBOL (continued)

Compiler option Comments

WORD(NOOO) If you have existing IBM COBOL programs that were compiled with
the WORD(NOOO) compiler option, they must be changed if they use
any of the following reserved words: CLASS-ID, END-INVOKE,
INHERITS, INVOKE, LOCAL-STORAGE, METACLASS, METHOD,
METHOD-ID, OBJECT, OVERRIDE, RECURSIVE, REPOSITORY,
RETURNING, SELF, SUPER.

The IGYCNOOO reserved word table is not shipped with the
Enterprise COBOL compiler.

146 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 11. Upgrading programs from Enterprise COBOL
Version 3

To compile with Enterprise COBOL Version 5, Enterprise COBOL Version 3
programs that use any of several features might need to be changed.

Programs that contain any of the following language features might need to be
modified:
v Programs with SEARCH ALL
v Programs that use XML PARSE
v Programs that use XML GENERATE
v Programs that use new reserved words as user words. For details, see “New

reserved words” on page 94.
v Programs that use SIMVRD feature
v Label declaratives. Programs that contain the format 2 declarative syntax:

USE...AFTER...LABEL PROCEDURE..., and optionally the syntax: GO TO
MORE-LABELS. The support for these was removed in Enterprise COBOL
Version 5.

v Programs using DATE FORMAT and windowed date functions. For details, see
“Changes in millenium language extensions in IBM Enterprise COBOL for z/OS,
Version 5” on page 166.

SEARCH ALL statements
Refer to this information if you have programs that contain SEARCH ALL
statements and that were compiled with V3R4 before the installation of the PTF for
APAR PK16765 or with Enterprise COBOL releases V3R1 through V3R3.

Tip: You can tell if your Enterprise COBOL V3R4 compiler has this PTF installed
by looking at the page header in the compiler listing. The modification level was
changed by this PTF from 0 to 1. If the product name in the header looks like this:
"Enterprise COBOL for z/OS 3.4.1", your compiler has the PTF installed.

Upgrading programs that have SEARCH ALL statements
Enterprise COBOL has corrected errors in the implementation of the SEARCH ALL
statement. SEARCH ALL statements in earlier releases of COBOL contained errors
in the key comparison logic, which caused different results than might have been
intended. In particular, the comparison did not produce the same result as an IF
statement or a sequential SEARCH statement.

Length mismatch problem: a search argument is longer than the table key

The SEARCH ALL statement comparisons should pad an alphanumeric key with
blanks or extend a numeric key with leading zeros if the key is shorter than the
SEARCH argument. However, in V3R3 and earlier releases, SEARCH ALL ignored
the excess characters in the argument in some cases. For example, an alphanumeric
search argument of 01 ARG PIC X(6) containing "ABCDEF" would incorrectly
match a table or array key of 05 MY-KEY PIC X(4) with value "ABCD". A search
argument containing "ABCD??" (where ? is a blank) would match, as expected.

© Copyright IBM Corp. 1991, 2019 147

Similar problems occurred with a numeric search argument and keys. For example,
a search argument of 01 ARG PIC 9(6) containing 123456 would incorrectly match
a table or array key of 05 MY-KEY PIC 9(4) with value 3456. A search argument
containing 003456 would match, as expected.

Sign mismatch problem: signed numeric argument and unsigned numeric key

A second problem occurs when the search argument is a signed numeric item and
the table key is an unsigned numeric item. If the runtime value of the search
argument is negative, such as -1234, programs compiled with V3R3 and earlier
would match a table key of 1234. These comparisons should be done using the
rules for a normal COBOL relation condition, and a negative argument such as
-1234 should never match a table key that is unsigned.

The correction:

Enterprise COBOL corrected these problems. However, some applications compiled
with earlier releases might depend on the incorrect behavior. You must identify
and modify these applications before you move them to Enterprise COBOL Version
4 or later.

To assist you in identifying the programs and SEARCH ALL statements that are
impacted by these corrections, the following compiler and runtime warning
diagnostics are issued.
v Compiler messages: Enterprise COBOL compiler generates the following

compiler diagnostics. Whether there is an actual impact depends on the contents
of the argument at run time.
– IGYPG3189-W for all SEARCH ALL statements that have a search argument

that is longer than the table key, and hence might be impacted by the first
problem

– IGYPG3188-W when the search argument is a signed numeric item and the
table key is an unsigned numeric item, and hence the program might be
impacted by the second problem

v Runtime messages: The following runtime messages are generated. Programs
that generate either of these runtime messages might be affected by the change.
– IGZ0194W for all SEARCH ALL statements that have search arguments with

excess bytes that are not blank or zero.
– IGZ0193W when the search argument is a signed numeric item with a

negative value and the table key is an unsigned numeric item.

To migrate

To move an application to Enterprise COBOL Version 4 or later, do one of the
following sets of steps:
v Act on the compiler messages:

1. Compile your programs with Enterprise COBOL
2. Review any SEARCH ALL statements that are flagged with compiler

messages IGYPG3188-W or IGYPG3189-W; such statements are potentially
impacted.

Tip: To minimize the possibility of incompatible results, you can force
programmers at your site to correct these SEARCH ALL statements by
changing the severity of these messages to E or S. To change the severity of
these messages, you can use the MSGEXIT suboption of the EXIT compiler

148 Enterprise COBOL for z/OS, V5.2 Migration Guide

option. By doing this, the programs that get these messages cannot be run
until the code is corrected. The sample user exit IGYMSGXT has sample code
in it to change the severity of IGYPG3188-W and IGYPG3189-W, to
IGYPG3188-S and IGYPG3189-S, respectively.

v Act on the runtime messages:
1. Run the application in a test environment.
2. Review any SEARCH ALL statements that generate runtime message

IGZ0193W or IGZ0194W.

After you have identified which of the SEARCH ALL statements are affected,
adjust the application logic appropriately by doing the following steps:
v For SEARCH ALL statements in which the search argument is longer than the

table key, do one of the following actions:
– Ensure that any bytes in the argument in excess of the key length are spaces

or zeroes as appropriate.

Tip: When you have completed this investigation and if you decided not to
change your programs, you can change the severity of IGYPG3188-W and
IGYPG3189-W, to IGYPG3188-I and IGYPG3189-I, respectively, or suppress
these messages entirely, by using the MSGEXIT suboption of the EXIT
compiler options. This allows your programs to then compile with RC=0. The
sample user exit IGYMSGXT has sample code in it to change the severity of
IGYPG3188-W and IGYPG3189-W.

– Move the argument to a temporary data item of the same size as the key and
use the temporary item as the search argument.

– Limit the range of the comparison with reference-modification. For example:
- in the alphanumeric case of search argument 01 ARG PIC X(6) and key of

05 MY-KEY PIC X(4) use this:
WHEN MY-KEY (MY-INDEX) = ARG(1:4)

- in the numeric case of search argument 01 ARG PIC 9(6) and array key of
05 MY-KEY PIC 9(4) use this:
WHEN MY-KEY (MY-INDEX) = ARG(3:4)

The second and third actions above will prevent the warning message in the
future.

v For SEARCH ALL statements in which the search argument is signed and the
table key is unsigned, ensure that the search argument is correctly initialized to
a positive value before the SEARCH statement is run. Depending on the specific
application logic in the COBOL program, it might be possible to make one of the
following changes:
– Change the data description of the argument to be unsigned.
– Move the search argument to a temporary variable with no sign and use the

temporary variable in the SEARCH ALL statement.

Either action will prevent the warning message in the future.

Upgrading Enterprise COBOL Version 3 programs that have XML
PARSE statements

Refer to this information for upgrading Enterprise COBOL Version 3 programs that
have XML PARSE statements.

Chapter 11. Upgrading programs from Enterprise COBOL Version 3 149

|

|

|
|

Enterprise COBOL Version 4 introduced new XML PARSE support compared to
Enterprise COBOL Version 3. In particular, the z/OS System Services XML parser
was supported as the default alternative to the XML parser that is part of the
COBOL runtime library. In version 5, you can choose between the COBOL runtime
library parser and the XML System Services parsers.

Originally, Enterprise COBOL V5.1 did not have an XMLPARSE compiler option
and required the XMLSS parser. However, with current service applied, V5.1 is the
same as V5.2 in this area, and both have the XMLPARSE compiler option so that
you can choose the same parser in V5 that you used with earlier versions of
Enterprise COBOL.
v XMLPARSE(COMPAT) specifies that the compiled code will use the COBOL

runtime library parser.
In most cases, you do not have to change your Enterprise COBOL Version 3
programs that have XML PARSE statements to upgrade to Enterprise COBOL
Version 5. You can have the compatible behavior by specifying the
XMLPARSE(COMPAT) compiler option. However, the COMPAT XML parser
implementation in Enterprise COBOL Version 5.2 is different in rare cases from
that in Version 3. The change does not affect most existing programs, but you
should review the unusual cases where the differences could occur. For details,
see “COMPAT XML parser considerations.”

v XMLPARSE(XMLSS) specifies that the compiled code will use the z/OS System
Services XML parser.
You must change your Enterprise COBOL Version 3 programs that use XML
PARSE statements if you want to change to use XMLPARSE(XMLSS).
The z/OS System Services XML parser provides the following benefits:
– The latest IBM parsing technology
– Offload of COBOL XML parsing to zAAP specialty processors
– Improved support for parsing XML documents that use XML namespaces
– Direct support for parsing XML documents encoded in UTF-8 Unicode
– Support for parsing large XML documents, a buffer at a time
To optionally modify your Enterprise COBOL Version 3 programs to use
XMLPARSE(XMLSS) with Enterprise COBOL Version 5, change the programs to
reflect the new, changed, and discontinued XML parsing events. For details, see
Appendix L, “Migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS),”
on page 297.

COMPAT XML parser considerations
User modifications to the XML document during execution of the
XML PARSE statement

In versions earlier than Enterprise COBOL V5, the COMPAT XML parser was
actively in progress when the XML processing procedure was executing. In V5, any
encoding conflicts are resolved and after that, the entire document is parsed, and
the XML events are stored in a buffer. After the parse is terminated, the XML
events are then presented from this buffer to your program by the PERFORM
statement that executes the processing procedure. Thus, if the program modifies
the XML document in the processing procedure code, the parser does not detect
these modifications. However, in the implementation in earlier versions, those
modifications such as correcting an end tag name to match the start tag name
would be seen and acted on by the parser.

150 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|

|

|

|

|

|

|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

A limited number of continuable XML EXCEPTION events

For XML EXCEPTION events with XML-CODE values in the range 1-49, if you
request continuation by setting XML-CODE to zero, the COMPAT XML parser
checks only for further errors and does not present any further non-EXCEPTION
XML events. When the V5 COMPAT XML parser continues after an EXCEPTION
event, the parser does not expand the XML event buffer and thus might not
present all the EXCEPTION events that would otherwise occur. The initial buffer
size can accommodate a minimum of 8192 XML events and is expanded as
necessary for non-EXCEPTION events.

Differences caused by LE condition handling

In versions earlier than Enterprise COBOL V5, the processing procedure was
executed in a stack frame that is subordinate to the stack frame of the active XML
parser. The processing procedure for the V5 COMPAT parser runs in the same
stack frame as the rest of the COBOL program, after the XML parser has run to
completion. This change has the following effects:
v Previously, LE condition handlers that are registered in the XML processing

procedure were not in effect after a COMPAT XML PARSE statement is
terminated. In the V5 implementation, they remain in effect until unregistered.

v Previously, a branching to an LE service resume point that is set outside the
XML processing procedure terminated a COMPAT XML PARSE statement. In V5,
the processing procedure must exit normally to terminate an XML PARSE
statement. Otherwise, the already active XML PARSE statement causes a runtime
error if either the program exits (IGZ0227S) or another XML PARSE statement is
executed (IGZ0228S).
The following program illustrates this difference. As described previously, it
executes “correctly” on versions earlier than Enterprise COBOL V5, but it causes
runtime errors IGZ0227S or IGZ0228S on Enterprise COBOL V5. After you
uncomment the indicated statements in the XML processing procedure, the
program runs without error on all versions.
Process XMLPARSE(COMPAT)
**
*** Function: ***
*** Demonstate a difference between XML PARSE COMPAT on ***
*** V3/V4 and V5 (or XMLSS on any version). ***
*** ***
*** In V3/4, the logical branch out of the XML processing ***
*** procedure by CEEMRCE terminates the XML PARSE. In V5, ***
*** it does not, resulting in runtime messages such as: ***
*** IGZ0227S There was an invalid attempt to end an ***
*** XML PARSE statement. ***
*** when the program terminates (or attempts another parse).***
**
Identification division.
Program-id. XMLMIGR1.

Data division.
Working-storage section.
1 XML-document pic x(4) value ’<x/>’.
1 zer0 comp pic 9 value 0.
Local-storage section.
1 routine procedure-pointer.
1 token pointer.
1 ceesrp-data.
2 resume-point comp pic s9(9).
2 state pic x value ’I’.
1 fdbk-code.
2 condition-token-value.

Chapter 11. Upgrading programs from Enterprise COBOL Version 3 151

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

88 fdbk-code-zero value low-value.
3 pic xx.
3 msg-no comp pic s9(4).
3 pic x(4).
2 pic x(4).

Procedure division. Main section.
Perform register-user-handler
Call ’CEE3SRP’ using resume-point fdbk-code
Service label.

Repeat.
If state = ’I’
XML parse XML-document processing procedure XML-proc
Display ’Back from XML parse...’
Go to Repeat

Else
If state = ’R’

Display ’Resumed after exception; in mainline code.’
End-if
Perform unregister-user-handler
Display ’Another XML parse (P), or exit (E)?’
Accept state
If state = ’P’

Move ’<y/>’ to XML-document
XML parse XML-document processing procedure XML-proc.

Goback.
Register-user-handler.

Set routine to entry ’USERHDLR’
Set token to address of ceesrp-data
Call ’CEEHDLR’ using routine token fdbk-code
If fdbk-code-zero
Display ’Registered exception handler successfully.’

Else
Display ’Failed to register exception handler!’ msg-no
Move 16 to return-code
Stop run.

Unregister-user-handler.
Set routine to entry ’USERHDLR’
Call ’CEEHDLU’ using routine fdbk-code
If fdbk-code-zero
Display ’Unregistered exception handler successfully.’

Else
Display ’Failed to unregister exception handler!’ msg-no
Move 16 to return-code
Stop run.

XML-proc section.
Display XML-event ’{’ XML-text ’}’
If XML-event = ’START-OF-DOCUMENT’
Display ’XML parse in progress...’
Move 1 to xml-code
Go to xp-srp.

If XML-event = ’START-OF-ELEMENT’ and XML-text = ’x’
Compute tally = 1 / zer0.

Go to xp-exit.
Xp-srp.

*** Uncomment the next two lines to move the resume point to ***
*** within the XML processing procedure, thus allowing the ***
*** XML PARSE statement to terminate normally and correctly. ***
* Call ’CEE3SRP’ using resume-point fdbk-code
* Service label

If state = ’R’
Display ’Resumed after exception; still in XML-proc.’
Move ’X’ to state.

Xp-exit.
Continue.

End program XMLMIGR1.

**

152 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

*** LE user condition handler, invoked when the fixed-point ***
*** divide exception occurs (system completion code S0C9). ***
**
Identification division.
Program-id. USERHDLR.

Data division.
Working-storage section.
1 fdbk-code.
2 condition-token-value pic x(8).
88 fdbk-code-zero value low-value.

2 pic x(4).
Linkage section.
1 ceesrp-data.
2 resume-point comp pic s9(9).
2 state pic x.
1 token pointer.
1 result comp pic s9(9).
88 resume value 10.
1 curr-cond pic x(12).
1 new-cond pic x(12).

Procedure division using curr-cond token result new-cond.
Display ’LE condition handler called...’
Set address of ceesrp-data to token
Call ’CEEMRCE’ using resume-point fdbk-code
If not fdbk-code-zero display ’Unable to resume execution!’
Else Set resume to true Move ’R’ to state.
Goback.

End program USERHDLR.

Upgrading Enterprise COBOL programs that have XML GENERATE
statements

Enterprise COBOL introduced five new XML GENERATE exception codes after
Enterprise COBOL Version 3.

Programs that use these exception codes might have to be changed to migrate to
later versions of Enterprise COBOL.

The XML GENERATE exception codes that were added to Enterprise COBOL are:

415 The receiver was national, but the encoding specified for the document
was not UTF-16.

416 The XML namespace identifier contained invalid XML characters.

417 Element character content or an attribute value contained characters that
are illegal in XML content. XML generation has continued, with the
element tag name or the attribute name prefixed with "hex." and the
original data value represented in the document in hexadecimal.

418 Substitution characters were generated by encoding conversion.

419 The XML namespace prefix was invalid.

Converting programs that use new reserved words
Some reserved words have been added since Enterprise COBOL Version 3.

If your programs use any of the new reserved words as user-defined words (such
as data item names or paragraph names), then those words must be changed. You
can do something similar to what CCCA does and just add a suffix such as -85 to
all instances of the word. For example:

Chapter 11. Upgrading programs from Enterprise COBOL Version 3 153

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

77 VOLATILE PIC S9(9) BINARY.
Move 0 TO VOLATILE.

To compile with Enterprise COBOL V5, change it to:
77 VOLATILE-85 PIC S9(9) BINARY.
Move 0 TO VOLATILE-85.

The new reserved words are:
v VOLATILE
v XML-INFORMATION
v XML-NAMESPACE
v XML-NAMESPACE-PREFIX
v XML-NNAMESPACE
v XML-NNAMESPACE-PREFIX
v XML-SCHEMA

The conversion tool CCCA automatically converts these reserved words for you if
you have the PTF for APAR PM86253 installed for Enterprise COBOL Version 5.1,
or if you have the PTF for APAR PI32750 installed for Enterprise COBOL Version
5.2. CCCA is included with the IBM Debug Tool product.

For a table comparing reserved words for all of the different COBOL compilers, see
Table 39 on page 234.

Upgrading programs that use SIMVRD support
This section describes the actions to upgrade programs that use SIMVRD support.
Support for COBOL simulated variable-length relative-record data sets (RRDS) is
removed for programs compiled with Enterprise COBOL Version 4 or later. These
files must be changed to VSAM RRDS files.

In COBOL compilers that supported the NOCMPR2 compiler option before
Enterprise COBOL Version 4, it was possible to use COBOL simulated variable-length
RRDS using a VSAM KSDS when you used the SIMVRD runtime option support.

The coding that you use in a COBOL program to identify and describe VSAM
variable-length RRDS and COBOL simulated variable-length RRDS is similar. With
Enterprise COBOL Version 4 you must use VSAM variable-length RRDS support.
In general, the only action to migrate from COBOL simulated variable-length
RRDS to VSAM variable-length RRDS support is to change the IDCAMS definition
of the file.

Table 26. Steps for using variable-length RRDS

Step VSAM variable-length RRDS COBOL simulated variable-length RRDS

1 Define the file with the
ORGANIZATION IS
RELATIVE clause.

Same

2 Use FD entries to describe the
records with variable-length
sizes.

Same, but you must also code RECORD IS
VARYING in the FD entry of every COBOL
program that accesses the data set.

3 Use the NOSIMVRD runtime
option.

Use the SIMVRD runtime option.

154 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|

|

|
|

|

|
|
|
|

Table 26. Steps for using variable-length RRDS (continued)

Step VSAM variable-length RRDS COBOL simulated variable-length RRDS

4 Define the VSAM file through
access-method services as an
RRDS.

Define the VSAM file through access-method
services as follows:

DEFINE CLUSTER INDEXED
KEYS(4,0)
RECORDSIZE(avg,m)

avg Is the average size of the COBOL
records; strictly less than m.

m Is greater than or equal to the
maximum size COBOL record + 4.

In step 2 for simulated variable-length RRDS, coding other language elements that
implied a variable-length record format did not give you COBOL simulated
variable-length RRDS. For example, the following elements alone did not cause the
use of simulated variable-length RRDS access, and therefore did not require the
SIMVRD runtime option:
v Multiple FD records of different lengths
v OCCURS . . . DEPENDING ON in the record definitions
v RECORD CONTAINS integer-1 TO integer-2 CHARACTERS

Use the REUSE IDCAMS parameter for files that contain records and that you will
open for output.
v Define the file with the ORGANIZATION IS RELATIVE clause.
v Use FD entries to describe the records with variable-length sizes.
v Use the NOSIMVRD runtime option.
v Define the VSAM file through access-method services as an RRDS.

Errors: When you work with simulated variable-length relative data sets and true
VSAM RRDS data sets, an OPEN file status 39 occurs if the COBOL file definition
and the VSAM data-set attributes do not match.

For more reference information about the commands for using variable-length
RRDS, see z/OS DFSMS: Access Method Services for Catalogs.

Chapter 11. Upgrading programs from Enterprise COBOL Version 3 155

156 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 12. Compiling Enterprise COBOL Version 3 programs

There have been a number of changes to compiler options and debug behavior
since Enterprise COBOL Version 3.

After reading these topics, see also Chapter 15, “Changes with IBM Enterprise
COBOL for z/OS, Version 5,” on page 171.

Compiler option changes from IBM Enterprise COBOL for z/OS,
Version 3

There have been a number of changes to compiler options.

The following options have been removed.

Table 27. Compiler options not available in Enterprise COBOL Version 5

Compiler option Comments

DATEPROC Support for Year 2000 extensions has been removed.

NOLIB Compiler behaves as though LIB is always in effect.

YEARWINDOW Support for Year 2000 extensions has been removed.

SIZE(MAX) The SIZE option has been removed.

NUMPROC(MIG) NUMPROC(PFD) and NUMPROC(NOPFD) are still available. If
NUMPROC(MIG) is specified, Enterprise COBOL issues a warning
message and the compilation will get the default setting for
NUMPROC. This is either the user-customized default or the IBM
default, which is NUMPROC(NOPFD).

To migrate your programs compiled with NUMPROC(MIG) to
Enterprise COBOL V5.2, consider using the NUMCHECK compiler
option to help you migrate to NUMPROC(PFD):

1. Compile your programs with NUMCHECK(ZON,PAC) and
NUMPROC(PFD).

2. Run a thorough regression test with a good breadth of input data.

If your applications get no NUMCHECK messages or NUMCHECK
abends, you can safely compile with NUMPROC(PFD) and
NONUMCHECK for production. This will not only solve the invalid
data problem, but NUMPROC(PFD) is the most efficient setting for the
NUMPROC compiler option.

NUMCHECK is introduced in Enterprise COBOL V5.2 with PTF for
APAR PI81006 installed. For details, see NUMCHECK in the Enterprise
COBOL Programming Guide.

Also note, the SSRANGE compiled-in range checks cannot be disabled at run time
using the runtime option CHECK(OFF) or NOSSRANGE

For descriptions of new and modified options for Enterprise COBOL V5, see
“Compiler option changes in Enterprise COBOL Version 5” on page 174.

For a detailed list of options supported for the various compiler versions, see
Appendix E, “Option comparison,” on page 263.

© Copyright IBM Corp. 1991, 2019 157

|
|

|

|
|
|

|
|

|

|
|
|
|
|

|
|
|

Differences in the TEST compiler option
This section provides information about changes to the TEST compiler option that
you need to know when you upgrade programs and compile with the TEST
compiler option. Enterprise COBOL Version 5 has a simplified TEST compiler
option compared to earlier compilers. If the TEST option is specified in JCL or
CBL/PROCESS statements in COBOL source, you may want to change them. The
following TEST suboptions have been removed, but some continue to be tolerated
to ease migration. Compiler diagnostics messages are issued if they are used. The
removed suboptions may not be specified together with new suboptions in the
same TEST option specification.

Table 28. The removed TEST suboptions

Removed
suboption

Behavior if specified with compiler Diagnostic message level or
category

ALL Diagnostic issued, no hooks generated in
object

Error (Invalid option
diagnostic, option
discarded)

BLOCK Diagnostic issued, no hooks generated in
object

Error (Invalid option
diagnostic, option
discarded)

PATH Diagnostic issued, no hooks generated in
object

Error (Invalid option
diagnostic, option
discarded)

STMT Diagnostic issued, no hooks generated in
object

Error (Invalid option
diagnostic, option
discarded)

NONE Diagnostic issued, no hooks generated in
object

Error (Invalid option
diagnostic, option
discarded)

SYM Diagnostic issued, symbolic debugging
information always generated

Error (Invalid option
diagnostic, option
discarded)

NOSYM Diagnostic issued, symbolic debugging
information always generated

Error (Invalid option
diagnostic, option
discarded)

HOOK Diagnostic issued, no hooks generated in
object

Informational message about
NOHOOK behavior always
in effect (Suboption
tolerated, TEST in effect)

NOHOOK Diagnostic issued, no hooks generated in
object

Informational message about
NOHOOK behavior always
in effect (Suboption
tolerated, TEST in effect)

SEPARATE Diagnostic issued, debug information
always generated in object module

Informational message about
NOSEPARATE behavior
always in effect (Suboption
tolerated, TEST in effect)

NOSEPARATE Diagnostic issued, debug information
always generated in object module

Informational message about
NOSEPARATE behavior
always in effect (Suboption
tolerated, TEST in effect)

158 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|

||

|
|
||
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|
|

Note: None of the old TEST suboptions are recognized when specified in
IGYCDOPT for setting installation default options.

Debug information changes with IBM Enterprise COBOL Version 5
Programs compiled with IBM Enterprise COBOL Version 5 will have different
debug information than that of programs compiled with previous versions of the
compiler.

IBM Enterprise COBOL Version 5 solves the dilemma of debugging information. In
the past you had 2 choices:
v Have the debug data always with the executable at a cost of a large load

footprint, or
v Have separate debug data but also have the challenge of keeping it

synchronized with the application and finding it when needed.

Now you have the best of both worlds. With NOLOAD debug segments in the
program object, the debug data does not increase the size of the loaded program, it
always matches the executable and is always available so there is no need to
search lists of data sets.

There have been changes to the TEST compiler option used to generate debuggable
versions of your application and to the NOTEST option.
v When the TEST option is specified, DWARF debug information is included in the

application module.
v If the SOURCE suboption is specified, the DWARF debug information includes the

expanded source code, and the compiler listing is not needed by IBM Debug
Tool. When the TEST(NOSOURCE) compiler option is specified, the generated
DWARF debugging information does not include the expanded source code.

v You can use the NOTEST(DWARF) compiler option to include basic DWARF
debugging information in the program object. You cannot debug such programs
with Debug Tool, but you can get NOTEST optimization and still enable
application failure analysis tools, such as CEEDUMP output and IBM Fault
Analyzer.

v To have no debugging information in the program object, use the
NOTEST(NODWARF) option.

When debugging your COBOL programs, you will find that there have been a
large number of improvements and behavior changes introduced with Enterprise
COBOL V5. For details about changes in debugging with IBM Debug Tool, see
“Debug Tool changes with IBM Enterprise COBOL Version 5” on page 202.

Chapter 12. Compiling Enterprise COBOL Version 3 programs 159

|
|

160 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 13. Upgrading from Enterprise COBOL Version 4

To compile with Enterprise COBOL Version 5, Enterprise COBOL Version 4
programs that use any of several features might need to be upgraded.

Programs that contain any of the following language features might need to be
modified:
v Programs that use XML PARSE with XMLPARSE(COMPAT)
v V4R1 programs that use XML PARSE with XMLPARSE(XMLSS)
v Programs using DATE FORMAT and windowed date functions. For details, see

“Changes in millenium language extensions in IBM Enterprise COBOL for z/OS,
Version 5” on page 166.

v Label declaratives. To compile programs with Enterprise COBOL V5, you must
remove any format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE...,
and the syntax: GO TO MORE-LABELS. The support for these was removed in
Enterprise COBOL Version 5

v Programs that use new reserved words as user words. For details, see “New
reserved words” on page 94.

There is a new compiler option, FLAGMIG4, available with APAR PM93450 for
Enterprise COBOL V4.2 to help you migrate to Enterprise COBOL V5. The
FLAGMIG4 option identifies language elements in Enterprise COBOL V4 programs
that are not supported, or that are supported differently in Enterprise COBOL V5.
The compiler will generate a warning diagnostic message for all such language
elements.

Tip: It is recommended that you review and apply the Enterprise COBOL V4 PTFs
to support the migration to Enterprise COBOL V5 or V6. For details, see
http://www.ibm.com/support/docview.wss?uid=swg21982146.

Upgrading Enterprise COBOL Version 4 programs that have XML
PARSE statements

You can refer to the following guidelines for upgrading Enterprise COBOL Version
4 programs that have XML PARSE statements.

Whether you were using the COMPAT XML parser that is part of the COBOL
runtime library or the the z/OS System Services XML parser with previous
versions of Enterprise COBOL, you most likely do not need to make any code
changes for Enterprise COBOL Version 5.

If you were using the z/OS System Services XML parser with Enterprise COBOL
Version 4.2, you do not need to make any code changes for Enterprise COBOL
Version 5.2. Originally, Enterprise COBOL V5.1 did not have an XMLPARSE
compiler option and required the XMLSS parser. However, with current service
applied, V5.1 is the same as V5.2 in this area, and both have the XMLPARSE
compiler option so that you can choose the same parser in V5 that you used with
earlier versions of Enterprise COBOL.

If you were using the z/OS System Services XML parser with Enterprise COBOL
Version 4.1, consider information in “Upgrading Enterprise COBOL Version 4

© Copyright IBM Corp. 1991, 2019 161

|
|
|

|

|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

http://www.ibm.com/support/docview.wss?uid=swg21982146

Release 1 programs that have XML PARSE statements and that use the
XMLPARSE(XMLSS) compiler option” on page 164.

If you use the COMPAT XML parser that is part of the COBOL runtime library
with Enterprise COBOL Version 4 and Version 3, you most likely do not have to
change your code. The COMPAT XML parser implementation in Enterprise
COBOL Version 5 has two minor differences in special cases compared to Versions
3 and Version 4, so you should review the special considerations to these rare cases
where the differences could occur. For details, see “COMPAT XML parser
considerations” on page 150.

COMPAT XML parser considerations
User modifications to the XML document during execution of the
XML PARSE statement

In versions earlier than Enterprise COBOL V5, the COMPAT XML parser was
actively in progress when the XML processing procedure was executing. In V5, any
encoding conflicts are resolved and after that, the entire document is parsed, and
the XML events are stored in a buffer. After the parse is terminated, the XML
events are then presented from this buffer to your program by the PERFORM
statement that executes the processing procedure. Thus, if the program modifies
the XML document in the processing procedure code, the parser does not detect
these modifications. However, in the implementation in earlier versions, those
modifications such as correcting an end tag name to match the start tag name
would be seen and acted on by the parser.

A limited number of continuable XML EXCEPTION events

For XML EXCEPTION events with XML-CODE values in the range 1-49, if you
request continuation by setting XML-CODE to zero, the COMPAT XML parser
checks only for further errors and does not present any further non-EXCEPTION
XML events. When the V5 COMPAT XML parser continues after an EXCEPTION
event, the parser does not expand the XML event buffer and thus might not
present all the EXCEPTION events that would otherwise occur. The initial buffer
size can accommodate a minimum of 8192 XML events and is expanded as
necessary for non-EXCEPTION events.

Differences caused by LE condition handling

In versions earlier than Enterprise COBOL V5, the processing procedure was
executed in a stack frame that is subordinate to the stack frame of the active XML
parser. The processing procedure for the V5 COMPAT parser runs in the same
stack frame as the rest of the COBOL program, after the XML parser has run to
completion. This change has the following effects:
v Previously, LE condition handlers that are registered in the XML processing

procedure were not in effect after a COMPAT XML PARSE statement is
terminated. In the V5 implementation, they remain in effect until unregistered.

v Previously, a branching to an LE service resume point that is set outside the
XML processing procedure terminated a COMPAT XML PARSE statement. In V5,
the processing procedure must exit normally to terminate an XML PARSE
statement. Otherwise, the already active XML PARSE statement causes a runtime
error if either the program exits (IGZ0227S) or another XML PARSE statement is
executed (IGZ0228S).
The following program illustrates this difference. As described previously, it
executes “correctly” on versions earlier than Enterprise COBOL V5, but it causes

162 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

runtime errors IGZ0227S or IGZ0228S on Enterprise COBOL V5. After you
uncomment the indicated statements in the XML processing procedure, the
program runs without error on all versions.
Process XMLPARSE(COMPAT)
**
*** Function: ***
*** Demonstate a difference between XML PARSE COMPAT on ***
*** V3/V4 and V5 (or XMLSS on any version). ***
*** ***
*** In V3/4, the logical branch out of the XML processing ***
*** procedure by CEEMRCE terminates the XML PARSE. In V5, ***
*** it does not, resulting in runtime messages such as: ***
*** IGZ0227S There was an invalid attempt to end an ***
*** XML PARSE statement. ***
*** when the program terminates (or attempts another parse).***
**
Identification division.
Program-id. XMLMIGR1.

Data division.
Working-storage section.
1 XML-document pic x(4) value ’<x/>’.
1 zer0 comp pic 9 value 0.
Local-storage section.
1 routine procedure-pointer.
1 token pointer.
1 ceesrp-data.
2 resume-point comp pic s9(9).
2 state pic x value ’I’.
1 fdbk-code.
2 condition-token-value.
88 fdbk-code-zero value low-value.
3 pic xx.
3 msg-no comp pic s9(4).
3 pic x(4).
2 pic x(4).

Procedure division. Main section.
Perform register-user-handler
Call ’CEE3SRP’ using resume-point fdbk-code
Service label.

Repeat.
If state = ’I’

XML parse XML-document processing procedure XML-proc
Display ’Back from XML parse...’
Go to Repeat

Else
If state = ’R’

Display ’Resumed after exception; in mainline code.’
End-if
Perform unregister-user-handler
Display ’Another XML parse (P), or exit (E)?’
Accept state
If state = ’P’

Move ’<y/>’ to XML-document
XML parse XML-document processing procedure XML-proc.

Goback.
Register-user-handler.
Set routine to entry ’USERHDLR’
Set token to address of ceesrp-data
Call ’CEEHDLR’ using routine token fdbk-code
If fdbk-code-zero

Display ’Registered exception handler successfully.’
Else

Display ’Failed to register exception handler!’ msg-no
Move 16 to return-code
Stop run.

Unregister-user-handler.

Chapter 13. Upgrading from Enterprise COBOL Version 4 163

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Set routine to entry ’USERHDLR’
Call ’CEEHDLU’ using routine fdbk-code
If fdbk-code-zero
Display ’Unregistered exception handler successfully.’

Else
Display ’Failed to unregister exception handler!’ msg-no
Move 16 to return-code
Stop run.

XML-proc section.
Display XML-event ’{’ XML-text ’}’
If XML-event = ’START-OF-DOCUMENT’
Display ’XML parse in progress...’
Move 1 to xml-code
Go to xp-srp.

If XML-event = ’START-OF-ELEMENT’ and XML-text = ’x’
Compute tally = 1 / zer0.

Go to xp-exit.
Xp-srp.

*** Uncomment the next two lines to move the resume point to ***
*** within the XML processing procedure, thus allowing the ***
*** XML PARSE statement to terminate normally and correctly. ***
* Call ’CEE3SRP’ using resume-point fdbk-code
* Service label

If state = ’R’
Display ’Resumed after exception; still in XML-proc.’
Move ’X’ to state.

Xp-exit.
Continue.

End program XMLMIGR1.

**
*** LE user condition handler, invoked when the fixed-point ***
*** divide exception occurs (system completion code S0C9). ***
**
Identification division.
Program-id. USERHDLR.

Data division.
Working-storage section.
1 fdbk-code.
2 condition-token-value pic x(8).
88 fdbk-code-zero value low-value.

2 pic x(4).
Linkage section.
1 ceesrp-data.
2 resume-point comp pic s9(9).
2 state pic x.
1 token pointer.
1 result comp pic s9(9).
88 resume value 10.
1 curr-cond pic x(12).
1 new-cond pic x(12).

Procedure division using curr-cond token result new-cond.
Display ’LE condition handler called...’
Set address of ceesrp-data to token
Call ’CEEMRCE’ using resume-point fdbk-code
If not fdbk-code-zero display ’Unable to resume execution!’
Else Set resume to true Move ’R’ to state.
Goback.

End program USERHDLR.

Upgrading Enterprise COBOL Version 4 Release 1 programs
that have XML PARSE statements and that use the
XMLPARSE(XMLSS) compiler option

There are differences in XML PARSE behavior with the XMLPARSE(XMLSS)
compiler option in effect between Enterprise COBOL Version 4 Release 1 and

164 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|

Enterprise COBOL Version 4 Release 2 or later. In Enterprise COBOL Version 4
Release 1 when you parsed an XML document using the XMLPARSE(XMLSS)
compiler option and it contained character references that could not be expressed
in the encoding of the document, the result was a single ATTRIBUTE-
CHARACTERS or CONTENT-CHARACTERS XML event in which every
unrepresentable character reference was replaced by a hyphen-minus. No
indication was given to the program that the substitution occurred.

For example, parsing the content of the following XML element:
<elem>abcሴxyz</elem>

under Enterprise COBOL Version 4 Release 1 with encoding CCSID 1140 and with
the XMLPARSE(XMLSS) compiler option in effect, resulted in a single
CONTENT-CHARACTERS XML event with special register XML-TEXT containing
the (EBCDIC) string:
abc-xyz

and with special register XML-CODE containing zero.

In Enterprise COBOL Version 4 Release 2 and later, when you parse an XML
document using the XMLPARSE(XMLSS) compiler option, instead of a single
ATTRIBUTE-CHARACTERS or CONTENT-CHARACTERS event, multiple XML
events occur. Each unrepresentable character reference previously replaced by a
hyphen-minus is instead expressed as an ATTRIBUTE-NATIONAL-CHARACTER
or CONTENT-NATIONAL-CHARACTER XML event, depending on the context in
which it occurred. These are XML events for the XMLPARSE(XMLSS) compiler
option.

Parsing the content of the XML element from before:
<elem>abcሴxyz</elem>

under Enterprise COBOL Version 4 Release 2 and later results in the following
sequence of XML events:
v CONTENT-CHARACTERS with XML-TEXT containing abc
v CONTENT-NATIONAL-CHARACTER with XML-NTEXT containing NX’1234’
v CONTENT-CHARACTERS with XML-TEXT containing xyz

Converting programs that use new reserved words
Some reserved words have been added since Enterprise COBOL Version 4.

If your programs use any of the new reserved words as user-defined words (such
as data item names or paragraph names), then those words must be changed. You
can do something similar to what CCCA does and just add a suffix such as -85 to
all instances of the word. For example:
77 VOLATILE PIC S9(9) BINARY.
Move 0 TO VOLATILE.

To compile with Enterprise COBOL V5, change it to:
77 VOLATILE-85 PIC S9(9) BINARY.
Move 0 TO VOLATILE-85.

The new reserved words are:
v VOLATILE

Chapter 13. Upgrading from Enterprise COBOL Version 4 165

|
|
|
|
|
|
|

|

|

|
|
|
|

|

|

|
|
|
|
|
|
|
|

|

|

|
|

|

|

|

|

|

|
|
|
|

|
|

|

|
|

|

|

v XML-INFORMATION

The conversion tool CCCA automatically converts these reserved words for you if
you have the PTF for APAR PM86253 installed for Enterprise COBOL Version 5.1,
or if you have the PTF for APAR PI32750 installed for Enterprise COBOL Version
5.2. CCCA is included with the IBM Debug Tool product.

For a table comparing reserved words for all of the different COBOL compilers, see
Table 39 on page 234.

Changes in millenium language extensions in IBM Enterprise COBOL
for z/OS, Version 5

The Millennium Language Extensions are no longer supported.

The elements that have been removed are:
v DATE FORMAT clause
v DATEVAL intrinsic function
v UNDATE intrinsic function
v YEARWINDOW intrinsic function
v DATEPROC compiler option
v YEARWINDOW compiler option

These language elements must be removed in order to compile with Enterprise
COBOL Version 5.

166 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|
|
|
|

|
|

|
|

Chapter 14. Compiling Enterprise COBOL Version 4 programs

There have been a number of changes to compiler options and debug behavior for
Enterprise COBOL Version 4 programs.

After reading these topics, see also Chapter 15, “Changes with IBM Enterprise
COBOL for z/OS, Version 5,” on page 171.

Compiler option changes from IBM Enterprise COBOL for z/OS,
Version 4

There have been a number of changes to compiler options.

The following options have been removed.

Table 29. Compiler options not available in Enterprise COBOL Version 5

Compiler option Comments

DATEPROC Support for Year 2000 extensions has been removed.

NOLIB Compiler behaves as though LIB is always in effect.

YEARWINDOW Support for Year 2000 extensions has been removed.

SIZE The SIZE option has been removed.

NUMPROC(MIG) NUMPROC(PFD) and NUMPROC(NOPFD) are still available. If
NUMPROC(MIG) is specified, Enterprise COBOL issues a warning
message and the compilation will get the default setting for
NUMPROC. This is either the user-customized default or the IBM
default, which is NUMPROC(NOPFD).

To migrate your programs compiled with NUMPROC(MIG) to
Enterprise COBOL V5.2, consider using the NUMCHECK compiler
option to help you migrate to NUMPROC(PFD):

1. Compile your programs with NUMCHECK(ZON,PAC) and
NUMPROC(PFD).

2. Run a thorough regression test with a good breadth of input data.

If your applications get no NUMCHECK messages or NUMCHECK
abends, you can safely compile with NUMPROC(PFD) and
NONUMCHECK for production. This will not only solve the invalid
data problem, but NUMPROC(PFD) is the most efficient setting for the
NUMPROC compiler option.

NUMCHECK is introduced in Enterprise COBOL V5.2 with PTF for
APAR PI81006 installed. For details, see NUMCHECK in the Enterprise
COBOL Programming Guide.

Also note, the compiled-in range checks (for programs compiled with the
SSRANGE compiler option) cannot be disabled at run time using the runtime
options CHECK(OFF) or NOSSRANGE

For descriptions of new and modified options for Enterprise COBOL Version 5, see
“Compiler option changes in Enterprise COBOL Version 5” on page 174.

© Copyright IBM Corp. 1991, 2019 167

|

|
|
|

|
|

|

|
|
|
|
|

|
|
|

|
|

For a detailed list of options supported for the various compiler versions, see
Appendix E, “Option comparison,” on page 263.

For detailed descriptions of all options, see the Enterprise COBOL Programming
Guide.

Debug information changes with IBM Enterprise COBOL Version 5
Programs compiled with IBM Enterprise COBOL Version 5 will have different
debug information than that of programs compiled with previous versions of the
compiler.

IBM Enterprise COBOL Version 5 solves the dilemma of debugging information. In
the past you had 2 choices:
v Have the debug data always with the executable at a cost of a large load

footprint, or
v Have separate debug data but also have the challenge of keeping it

synchronized with the application and finding it when needed.

Now you have the best of both worlds. With NOLOAD debug segments in the
program object, the debug data does not increase the size of the loaded program, it
always matches the executable and is always available so there is no need to
search lists of data sets.

There have been changes to the TEST compiler option used to generate debuggable
versions of your application and to the NOTEST option.
v When the TEST option is specified, DWARF debug information is included in the

application module.
v If the SOURCE suboption is specified, the DWARF debug information includes the

expanded source code, and the compiler listing is not needed by IBM Debug
Tool. When the TEST(NOSOURCE) compiler option is specified, the generated
DWARF debugging information does not include the expanded source code.

v You can use the NOTEST(DWARF) compiler option to include basic DWARF
debugging information in the program object. You cannot debug such programs
with Debug Tool, but you can get NOTEST optimization and still enable
application failure analysis tools, such as CEEDUMP output and IBM Fault
Analyzer.

v To have no debugging information in the program object, use the
NOTEST(NODWARF) option.

When debugging your COBOL programs, you will find that there have been a
large number of improvements and behavior changes introduced with Enterprise
COBOL V5. For details about changes in debugging with IBM Debug Tool, see
“Debug Tool changes with IBM Enterprise COBOL Version 5” on page 202.

168 Enterprise COBOL for z/OS, V5.2 Migration Guide

Part 4. What is new and different with Enterprise COBOL
Version 5?

There are a few differences from all previous compilers to consider when using
Enterprise COBOL V5. After reading the section about migrating a program or
application from the compiler you are currently using, read this section.

With current service applied, Enterprise COBOL V5.1 is equivalent to Enterprise
COBOL V5.2 for migration purposes.

© Copyright IBM Corp. 1991, 2019 169

|
|

170 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 15. Changes with IBM Enterprise COBOL for z/OS,
Version 5

There are many changes to the compiler and runtime library with Enterprise
COBOL V5. There are changes in compiling, binding (link-editing), execution, and
even changed Debug Tool behavior.

These changes fall into the following categories:
1. Prerequisite software and service
2. Source code differences
3. Compiler option differences
4. Compiling behavior differences
5. Binding (link-editing) differences
6. Differences at run time
7. Debug information and Debug Tool behavior changes

Prerequisite software and service for Enterprise COBOL Version 5
Updates are required for other products to compile programs with Enterprise
COBOL V5 and also to bind, run and debug those programs. Now, with Enterprise
COBOL V5, you can use FIXCAT to find required service.

Prerequisite levels of related software products

To use these products with Enterprise COBOL V5, they must be at the following
levels:
v z/OS V1R13 or later
v CICS Transaction Server for z/OS, V3 or later
v IBM DB2 V9 or later
v IBM IMS V11 or later
v PD Tools V12 or later (Debug Tool, Fault Analyzer, Application Performance

Analyzer)
v Rational Developer for System z V9 (RDz) or later

OMVS segment requirements in Enterprise COBOL V5.2 prior to
the November 2016 PTF

Enterprise COBOL V5.2 compilers with versions prior to the November 2016 PTF
need to enable POSIX (z/OS UNIX System Services) facilities in the Language
Environment enclave it runs in. This was not required in Enterprise COBOL V5.1
or earlier compilers, nor is this required in COBOL V5.2 after the November 2016
PTF. To enable POSIX facilities, the user ID under which the compile is being run
needs an OMVS segment.

If there is no OMVS segment available, you will see the following diagnostic
message in the compile jobs system, and the compiler will abend with a U4093
RC=90 in CEEPIPI.

© Copyright IBM Corp. 1991, 2019 171

|

|

|

|
|

|
|
|
|
|
|

|
|
|

16.26.27 JOB00126 ICH408I USER(USRT011) GROUP(SYS1) NAME(############
465 CL(PROCESS)
465 OMVS SEGMENT NOT DEFINED

Prior to z/OS V2.1, there was a default OMVS segment (the BPX.DEFAULT.USER
facility) that all users shared if they didn't have one configured for them. As of
z/OS V2.1, the ability to use default OMVS segments is removed, so all z/OS
UNIX users or groups must have their own OMVS segments to use POSIX
facilities. One solution is to use RACF® support (the BPX.UNIQUE.USER facility)
to automatically generate OMVS segments for users and groups that do not
already have them. Support for this automatic generation is available since z/OS
V1.11.

For details, see Automatically assigning unique IDs through UNIX services and
z/OS V2R1 Migration guide.

Determining service required

You no longer need to find lists of APARs and PTFs in PSP buckets. As of
Enterprise COBOL for z/OS V5, you must use SMP/E FIXCATs to identify the
required PTFs on other products to work with Enterprise COBOL V5. The required
service PTFs for COBOL for z/OS V5 are not documented in this Migration Guide,
are not included in PSP buckets, and are not included in any handouts for
conferences.

SMP/E FIXCATs allow you to have the most up to date and correct information
about Enterprise COBOL V5 required service. It is the easiest way to quickly
determine if you have all the necessary required service PTFs installed. For
Enterprise COBOL V5, you should use SMP/E V3R5 or later support for FIXCAT
HOLDDATA to do programmatic target system PTF verification. These PTFs are
identified with a FIXCAT called IBM.TargetSystem-RequiredService.Enterprise-
COBOL.V5R1 in Enhanced HOLDDATA.

A HOLDDATA type FIXCAT (fix category) is used to associate an APAR to a
particular category of fix for necessary target system PTFs. To help identify PTFs
required but not yet installed for your upgrade to Enterprise COBOL V5 on your
current system, use the SMP/E REPORT MISSINGFIX command. Here is a sample
command used to run against your z/OS CSI:
SET BDY(GLOBAL).
REPORT MISSINGFIX ZONES(ZOS13T)
FIXCAT(IBM.TargetSystem-RequiredService.Enterprise-COBOL.V5R1)

For complete information about the REPORT MISSINGFIX command, see SMP/E
Commands.

Enterprise COBOL V4.2 aids for migration to Enterprise COBOL
V5

Fixes for previous versions of Enterprise COBOL are not handled by FIXCAT. The
following APAR fixes contain aids for helping you migrate from Enterprise COBOL
V4.2 to Enterprise COBOL V5.
v PM93450 - FLAGMIG4. This one helps you identify if you have COBOL

statements that are unsupported in V5.
v PM85035 - new function to support XML-INFORMATION special register. This

one helps you migrate to XMLPARSE(XMLSS) and therefore to V5

172 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|

|
|
|
|
|
|
|
|

|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ICHZA7C0/17.4.2?SHELF=ichzbkc0&DT=20110620175910#HDRAUTOSVC
http://publibz.boulder.ibm.com/epubs/pdf/e0z3m102.pdf

v Language Environment, V1.13 PM87347 for XML-INFORMATION support at
run time if you have installed the related Enterprise COBOL V4 APAR,
PM85035.

COBOL source code differences in Enterprise COBOL Version 5
Several language elements have been removed or modified in IBM Enterprise
COBOL for z/OS V5 that may require updates to your source programs.

The Millennium Language Extensions are no longer supported. If your programs
have any of these language elements, they must be removed before you can
compile and run these programs with Enterprise COBOL V5 :
v DATE FORMAT clause
v DATEVAL intrinsic function
v UNDATE intrinsic function
v YEARWINDOW intrinsic function

There have been changes to LABEL declarative support. If your programs have
any of these language elements, they must be removed before you can compile and
run these programs with Enterprise COBOL V5 :
v Format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE... is no longer

supported
v The syntax: GO TO MORE-LABELS is no longer supported.

In Enterprise COBOL V5.2, VOLATILE is a new reserved word. Existing programs
that use VOLATILE as a user-defined word (for example, as a data name or
paragraph name) will get S-level diagnostic messages with Enterprise COBOL
V5.2. You must change these instances of VOLATILE to other words such as
VOLATILE-X, or you can use the CCCA utility to do it for you.

When moving a 16-bit COMP-5 sender (PICTURE clause PIC 9(2) through PIC
9(4)), with value x'8000' or higher, to an alphanumeric data item, Enterprise
COBOL V4.2 incorrectly uses an instruction that loads the value as a 32-bit value
with the high sixteen bits all ones. This incorrectly changes the value that is moved
to the PIC X(9) receiver. Enterprise COBOL V5 correctly load the 16-bit value as a
32-bit value with the high sixteen bits all zeros, which is correct, but is different
from Enterprise COBOL V4.2.

For INSPECT...TALLYING, previous versions of the compiler inserts zone nibbles in a
display numeric inspected item before performing the INSPECT. This will for
example change SPACES to ZEROS. COBOL V5.1 and later no longer do this zone
normalization. Having INSPECT without a REPLACING clause update the inspected
item is unexpected.

Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5 173

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

Compiler option changes in Enterprise COBOL Version 5
A number of changes are made to compiler options in Enterprise COBOL V5.

The following options are new:

Table 30. Compiler options new with Enterprise COBOL Version 5

Compiler option Comments

AFP New option. It controls the compiler usage of the Additional Floating
Point (AFP) registers that are provided by z/Architecture processors.
AFP(VOLATILE) is the default.

ARCH New option. It specifies the machine architecture for which the
executable program instructions are to be generated.

v In Enterprise COBOL V5.1, ARCH(6) is the default.

v In Enterprise COBOL V5.2, ARCH(6) is no longer accepted. A new
higher level of ARCH(11) is accepted, and ARCH(7) is the default.

COPYRIGHT New option in Enterprise COBOL V5.2. It places a string in the object
module if the object module is generated.

DISPSIGN New option. It controls output formatting for DISPLAY of signed
numeric items. DISPSIGN(COMPAT) is the default.

HGPR New option. It controls the compiler usage of the 64-bit registers
provided by z/Architecture processors. HGPR(PRESERVE) is the
default.

INITCHECK New option in Enterprise COBOL V5.2 with PTF for APAR PI69197
installed. It controls whether to check for uninitialized data items and
issue warning messages when they are used without being initialized.
NOINITCHECK is the default.

MAXPCF New option. It instructs the compiler not to optimize code if the
program contains a complexity factor greater than n.

NUMCHECK New option in Enterprise COBOL V5.2 with PTF for APAR PI81006
installed. It controls whether to generate implicit numeric class tests for
zoned decimal and packed decimal data items that are used as sending
data items, and whether to generate SIZE ERROR checking for binary
data items.

QUALIFY New option in Enterprise COBOL V5.2. It affects qualification rules and
controls whether to extend qualification rules so that some data items
that cannot be referenced under COBOL Standard rules can be
referenced.

SERVICE New option in Enterprise COBOL V5.2. It places a string in the object
module if the object module is generated.

SQLIMS New option. It enables the new IMS SQL coprocessor (called SQL
statement coprocessor by IMS). The new coprocessor handles your
source programs that contain embedded SQLIMS statements.

Originally, Enterprise COBOL V5.1 at base level did not have the
SQLIMS option; but with current service applied, V5.1 is like V5.2 and
now has the SQLIMS option.

STGOPT New option. It controls storage optimization. NOSTGOPT is the default.

174 Enterprise COBOL for z/OS, V5.2 Migration Guide

||
|

|

|
|

||
|

||
|
|
|

||
|
|
|
|

||
|
|
|

||
|

||
|
|

|
|
|

Table 30. Compiler options new with Enterprise COBOL Version 5 (continued)

Compiler option Comments

VLR New option. It affects the READ statement processing of variable length
records that have length conflicts. VLR(COMPAT) is the default.

Originally, Enterprise COBOL V5.1 at base level did not have the VLR
option and had some migration issues; but with current service applied,
V5.1 is like V5.2 and now has the VLR option. For details, see “Variable
length records - wrong length READ” on page 185.

VSAMOPENFS New option in Enterprise COBOL V5.2 with PTF for APAR PI85868
installed. It affects the user file status reported from successful VSAM
OPEN statements that require verified file integrity check.

XMLPARSE New option. It enables you to choose between parsing with the
compatibility-mode COBOL XML parser from the COBOL library, or
with the z/OS XML System Services parser. It can ease your migration
to the Enterprise COBOL V5 compiler. XMLPARSE(XMLSS) is the
default.

Originally, Enterprise COBOL V5.1 at base level did not have the
XMLPARSE option and had some migration issues; but with current
service applied, V5.1 is like V5.2 and now has the XMLPARSE option.

ZONECHECK New option in Enterprise COBOL V5.2 with the PTF for APAR PI40822
installed. It tells the compiler to generate IF NUMERIC class tests for
zoned decimal data items that are used as sending data items.

In Enterprise COBOL V5.2 with PTF for APAR PI81006 installed,
ZONECHECK is deprecated but is tolerated for compatibility. Consider
using NUMCHECK(ZON) instead. For details, see NUMCHECK in the
Enterprise COBOL Programming Guide.

ZONEDATA New option in Enterprise COBOL V5.2. It tells the compiler whether
data in USAGE DISPLAY and PACKED-DECIMAL data items is valid,
and if not, what the behavior of the compiler should be.

Originally, Enterprise COBOL V5.2 at base level did not have the
NOPFD suboption. In V5.2 with the PTF for APAR PI40853 installed,
the NOPFD suboption is added to let the compiler generate code that
performs comparisons of zoned decimal data in the same manner as
COBOL V4 does when using NUMPROC(NOPFD|PFD) in COBOL V4.

To ease your migration to COBOL V5:

v If your digits, sign code, and zone bits are valid, use
ZONEDATA(PFD) and the same NUMPROC setting that you used
with COBOL V4 when using COBOL V5.

v If you have invalid digits, invalid sign code, or invalid zone bits:

– If you used NUMPROC(MIG) with COBOL V4, use
ZONEDATA(MIG) and NUMPROC(NOPFD) with COBOL V5.

– If you used NUMPROC(NOPFD) with COBOL V4, use
ZONEDATA(NOPFD) and NUMPROC(NOPFD) with COBOL V5.

– If you used NUMPROC(PFD) with COBOL V4, use
ZONEDATA(NOPFD) and NUMPROC(PFD) with COBOL V5.

Note: It is not always possible to entirely match the behaviour of the
old compiler even with these options when faced with clearly invalid
data.

The following options are modified:

Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5 175

||
|

|
|
|
|

||
|
|

||
|
|
|
|

|
|
|

||
|
|

|
|
|
|

||
|
|

|
|
|
|
|

|

|
|
|

|

|
|

|
|

|
|

|
|
|
|

|

Table 31. Compiler options changed with Enterprise COBOL Version 5

Compiler option Comments

EXIT The EXIT compiler option is no longer mutually exclusive with the
DUMP compiler option, and the compiler exits rules are updated.

MAP New suboptions HEX and DEC are added to the MAP compiler option
to control whether hexadecimal or decimal offsets are shown for MAP
output in the compiler listing.

Previous versions of Enterprise COBOL always showed hexadecimal
offsets in MAP output, but Enterprise COBOL V5.1 originally always
showed decimal offsets for MAP output. Enterprise COBOL V5.1 was
changed via service to have new suboptions HEX and DEC to the MAP
option. Enterprise COBOL V5.2 has both new MAP suboptions as well.
In both V5.1 with service and V5.2, if MAP is specified with no
suboption, it will be accepted as MAP(HEX).

This will give you the same behavior in Enterprise COBOL V5 as in
earlier COBOL compilers. Thus, it can ease your migration to Enterprise
COBOL V5 compiler.

MDECK The MDECK option no longer has a dependency on the LIB option, as
the compiler behaves as though the LIB option is always enabled.

NORENT NORENT can no longer be used with RMODE(ANY).

Execution of NORENT programs above the 16 MB line is not
supported.

OPTIMIZE The OPTIMIZE option is modified to allow more levels of performance
optimization for your application. The previous OPTIMIZE option
format is deprecated but is tolerated for compatibility.
Note: Although OPT(0) is equivalent to the NOOPTIMIZE option in
previous compilers, it now removes some code that previously was not
removed.

The storage optimization provided by the old FULL suboption of OPT
is now provided by the new compiler option STGOPT.

RMODE(ANY) RMODE(ANY) can no longer be used with NORENT

SSRANGE The compiled-in range checks cannot be disabled at run time using the
runtime options CHECK(OFF) or NOSSRANGE.

With the PTF for APAR PI53044 installed, new suboptions ZLEN and
NOZLEN are added to control how the compiler checks reference
modification lengths.

With the PTF for APAR PI86343 installed, new suboptions MSG and
ABD are added to control the runtime behavior of the COBOL program
when a range check fails.
Note: The compiler option NOSSRANGE is still supported.

176 Enterprise COBOL for z/OS, V5.2 Migration Guide

||

||

||
|

||
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

Table 31. Compiler options changed with Enterprise COBOL Version 5 (continued)

Compiler option Comments

TEST The HOOK | NOHOOK and SEPARATE | NOSEPARATE suboptions
of the TEST compiler option have been removed. If specified,

v HOOK - compiled in hooks are not available.

v NOHOOK - NOHOOK behavior is always in effect

v SEPARATE - Compiler always places debugging info in object

v NOSEPARATE - NOSEPARATE behavior is always in effect

New suboptions SOURCE and NOSOURCE are added to the TEST
compiler option.
Note: EJPD and NOEJPD subotions are still supported. With Debug
Tool V12 with APAR PM75819 or Debug Tool V13 or later, you can do
JUMPTO or GOTO even if you compile with the TEST(NOEJPD) option
and a non-zero OPTIMIZE level. You must, however, use the Debug
Tool command SET WARNING OFF and you may get unpredictable
results.

The NOTEST option is enhanced to include the suboptions DWARF
and NODWARF
Note: Even though DWARF debugging information is always placed in
the object program as NOLOAD segments, these NOLOAD segments
will not take storage at runtime, unless Debug Tool, CEEDUMP, Fault
Analyzer, Application Performance Analyzer or a 3rd-party vendor tool
that uses DWARF debugging data is used

The following options are removed:

Table 32. Compiler options not available in Enterprise COBOL Version 5

Compiler option Comments

DATEPROC Support for Year 2000 extensions has been removed.

NOLIB Compiler behaves as though LIB is always in effect.

NUMPROC(MIG) NUMPROC(PFD) and NUMPROC(NOPFD) are still available. If
NUMPROC(MIG) is specified, Enterprise COBOL issues a warning
message and the compilation will get the default setting for
NUMPROC. This is either the user-customized default or the IBM
default, which is NUMPROC(NOPFD).

To migrate your programs compiled with NUMPROC(MIG) to
Enterprise COBOL V5.2, consider using the NUMCHECK compiler
option to help you migrate to NUMPROC(PFD):

1. Compile your programs with NUMCHECK(ZON,PAC) and
NUMPROC(PFD).

2. Run a thorough regression test with a good breadth of input data.

If your applications get no NUMCHECK messages or NUMCHECK
abends, you can safely compile with NUMPROC(PFD) and
NONUMCHECK for production. This will not only solve the invalid
data problem, but NUMPROC(PFD) is the most efficient setting for the
NUMPROC compiler option.

NUMCHECK is introduced in Enterprise COBOL V5.2 with PTF for
APAR PI81006 installed. For details, see NUMCHECK in the Enterprise
COBOL Programming Guide.

Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5 177

||
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|

|
|
|

Table 32. Compiler options not available in Enterprise COBOL Version 5 (continued)

Compiler option Comments

SIZE v In Enterprise COBOL V5.1, the SIZE option value is no longer an
upper-limit for the total storage used by a COBOL compilation. In
addition, the SIZE suboption value MAX is no longer supported. The
default value for the SIZE option is SIZE(5000000). For more
information about compiler memory requirements, see “Changes in
compiling with Enterprise COBOL Version 5.”

v In Enterprise COBOL V5.2, the SIZE option has been removed.

YEARWINDOW Support for Year 2000 extensions has been removed.

The following options were obsolete in Enterprise COBOL V4, but were tolerated
with informational or warning messages to ease migration from V3 or prior
versions. With Enterprise COBOL V5, these options are no longer tolerated, and
specifying any of them will result in an error message.
v CMPR2
v EVENTS
v FDUMP
v FLAGSAA
v PFDSIGN
v RES

For a detailed list of options supported for the various compiler versions, see
Appendix E, “Option comparison,” on page 263.

For detailed descriptions of all options, see the Enterprise COBOL Programming
Guide.

Changes in compiling with Enterprise COBOL Version 5
There are a number of changes to IBM Enterprise COBOL for z/OS that result in
different behaviors.

The COBOL runtime library, the Language Environment component of z/OS, must
now be available at compilation time. In addition, Language Environment must be
updated with the APAR fixes (PTFs) for compiling programs with Enterprise
COBOL Version 5 and for running programs that were compiled with Enterprise
COBOL Version 5. For details about prerequisite software levels and required
maintenance, see “Prerequisite software and service for Enterprise COBOL Version
5” on page 171.

Compile-time storage requirements are substantially increased compared to prior
versions of Enterprise COBOL. The compiler requires a minimum of 200 M region
size to run. In Enterprise COBOL Version 5.1, the compiler option SIZE(MAX) is no
longer supported, but gets tolerated and interpreted as SIZE(5000K). Your SIZE
option setting should be in the range of 5000 K to 20000 K for V5.1.

It is not necessary to specify a high SIZE value for every large program. You must
raise the default SIZE value only when you encounter this error message during
compilation: IGYPG5062-U THERE WAS INSUFFICIENT STORAGE FOR COMPILER

178 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

||

||
|
|
|
|
|

|

|
|
|
|

|

|

|

|

|

|

PROCESSING. This message indicates that the compiler front end has run out of
memory while still processing the program, and you must use the SIZE option to
allocate more memory for the front end.

However, note that the memory allocated to the front end using the SIZE option is
not available to later phases of the compilation. Therefore, carefully calibrate the
SIZE value to avoid depriving the code generation and optimization steps of
memory. Otherwise, the compiler might abend in those later phases with the
following message: IGYCB7145-U INSUFFICIENT MEMORY IN THE COMPILER TO
CONTINUE COMPILATION.

In Enterprise COBOL Version 5.2, the compiler option SIZE is no longer supported.
Your region size must also be at least 200 M. The region size must be large
especially at higher optimization levels, that is, programs compiled with the OPT(1)
or OPT(2) compiler option.

Note: If you get unexpected compiler abends or this message: IEW4000I FETCH FOR
MODULE IGYCBE FROM DDNAME STEPLIB FAILED BECAUSE INSUFFICIENT STORAGE WAS
AVAILABLE., make sure that your region size is at least 200 M. REGION=0M in JCL
gives you the maximum amount allowed by the JES system defaults set up by
your system programmer. It may be less than needed. In that case your system
programmer must increase the user limit of region size.

Consider also the following changes:
v The Language Environment member ID for Enterprise COBOL Version 5 Release

1 is 4 (The member ID for all previous COBOL versions was 5).
v Compile-time CPU time requirements are substantially increased, compared to

prior versions of Enterprise COBOL. The compiler may take more than five
times as long to compile as the older compilers.

v Compile time and run time diagnostic messages might differ, and might be
generated at different times or locations.
– Presence or absence of informational and warning level diagnostic messages

might differ
– Diagnostic messages for programs that define excessive and unsupported

amounts of storage might be issued either by the binder at bind time, or by
Language Environment at run time, instead of by the compiler at compilation
time.

v The compiler output is in GOFF format. This format allows the compiler to
create more efficient generated code and also to put out the NOLOAD debug
information (DWARF) segments.

v There is no SYSDEBUG data set created for debug information.
v Compiler listing format and contents differ from prior versions of Enterprise

COBOL. You can find details on these changes in the Enterprise COBOL
Programming Guide.

v Several compiler limits are increased with Enterprise COBOL V5. For details, see
Appendix F, “Compiler limit comparison,” on page 281.

Compiler output to uninitialized data sets not supported
There are a couple of cases where the compiler fails if it tries to write to
uninitialized data sets.

Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5 179

|
|
|
|

|
|
|

|
|
|

Sequential data sets

With Enterprise COBOL Version 4 and earlier, the compiler could write to a
pre-allocated object file with no specific attributes from a previous compile step.
This is not possible with Enterprise COBOL Version 5.

For example, with Enterprise COBOL Version 4, the compiler could write to a
pre-allocated data set with no specified attributes (DISP=MOD) from a previous step.
When the compiler had written to the data set, it had the following attributes:
RECFM=FB LRECL=80 BLKSIZE=3200 DSORG=PS

With Enterprise COBOL Verison 5, the attributes are not changed and the attempt
to write to the file fails.

The file attributes will be
RECFM=U LRECL=** BLKSIZE=6144 DSORG=PS

This is not valid input to the binder.

To address this, you can provide data control block (DCB) information as follows
on the preallocation:
DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

PDS or PDSE data set

With earlier versions of Enterprise COBOL, the compiler could write to a
pre-allocated PDS object file with no specific attributes from a previous compile
step. This is not supported with Enterprise COBOL Version 5.

For example, with Enterprise COBOL Version 4, the compiler could write to a
pre-allocated PDS or PDSE with no specified attributes (DISP=MOD) from a previous
step. The compiler will create an object file of attributes:
RECFM=FB LRECL=80 BLKSIZE=3200 DSORG=PO

With Enterprise COBOL Version 5 DISP=MOD is not supported for PDS or PDSE data
sets.

If the PDS has undefined format (such as ouput from a previous step with no
DCB), and you use DISP=SHR or DISP=OLD, Enterprise COBOL Version 5 will write
but will not change the attributes. They will be left as:
RECFM=U LRECL=** BLKSIZE=6144 DSORG=PO

which is not valid input to the binder.

To fix this, specify DCB information on the allocation step as:
DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

Do not use DISP=MOD. Use only DISP=SHR or DISP=OLD.

JCL and packaging changes for Enterprise COBOL Version 5
There have been a number of changes to the packaging, installation and JCL with
Enterprise COBOL V5.

180 Enterprise COBOL for z/OS, V5.2 Migration Guide

The SIGYCOMP data set is now a PDSE, rather than a PDS data set as in prior
versions.

Enterprise COBOL V5 requires additional data sets
v When compiling under z/OS TSO or batch, the COBOL compiler now requires

15 utility data sets, SYSUT1 to SYSUT15
v The SYSMDECK data set is now required for all compilations. SYSMDECK may be

specified as a utility (temporary) data set if the NOMDECK option is specified.
When MDECK is specified, the SYSMDECK DD allocation must specify a permanent
data set.

v The alternate DDNAME list parameter, used when the COBOL compiler is
invoked from an assembly language program, is expanded with entries for the
additional work data sets.

The following JCL cataloged procedures are no longer supported, and have been
deleted with Enterprise COBOL V5. Because they all use the Language
Environment Prelinker or the DFSMS Loader, which are no longer supported for
use with Enterprise COBOL V5.
v IGYWCG
v IGYWCPG
v IGYWCPL
v IGYWCPLG
v IGYWPL

The catalogued procedures that ship with Enterprise COBOL V5 have been
modified.
v IGYWC
v IGYWCL
v IGYWCLG

Compilation restrictions for user-written condition handlers
with Enterprise COBOL Version 5

Refer to the restrictions for user-written condition handlers with Enterprise COBOL
V5, and the differences between V5.1 and V5.2.

User-written condition handlers with Enterprise COBOL V5.1

With Enterprise COBOL V5.1, all COBOL programs in an application that use the
Language Environment service CEEHDLR to register a user-written condition
handler must be compiled with one of the following configurations of compiler
options:
v OPTIMIZE(0)
v OPTIMIZE(1) and TEST
v OPTIMIZE(2) and TEST

Use of user-written condition handling services is incompatible with the advanced
optimizations done with OPTIMIZE(1) or OPTIMIZE(2) and NOTEST, and can
cause unpredictable results. You must specify the TEST option along with
OPTIMIZE(1) or OPTIMIZE(2), which reduces the amount of optimization
performed.

Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5 181

|

|

|
|

|

|
|
|
|

|

|

|

|
|
|
|
|

User-written condition handlers with Enterprise COBOL V5.2

With Enterprise COBOL V5.2, a new VOLATILE clause is added to the format 1
data description entry, which helps to address issues with using higher levels of
optimization for programs that use Language Environment (LE) condition handlers
registered via the LE service CEEHDLR. When OPTIMIZE(1) or OPTIMIZE(2) is
used without the TEST compiler option for such programs, care must be taken. In
particular, if a condition handler program accesses data items that are not defined
local to the condition handler program itself (for example, data items defined in
the application as EXTERNAL), such data items must be defined with the
VOLATILE clause in every program where a condition can occur. Otherwise, the
handler program might not use the latest value of the data item. In this case, the
use of the VOLATILE clause is preferred over the use of the TEST option for
performance considerations.

For condition handler scenarios that also use the SERVICE LABEL
compiler-directing statement with the LE service CEE3SRP to set a resume point,
the optimization of such programs can be significantly reduced.

Note: VOLATILE is now a reserved word in Enterprise COBOL. Existing programs
that use VOLATILE as a user-defined word (for example, as a data name or
paragraph name) will get S-level diagnostic messages with Enterprise COBOL
V5.2. You must change these instances of VOLATILE to other words such as
VOLATILE-X, or you can use the CCCA utility to do it for you.

For more information about the VOLATILE clause, see VOLATILE clause in the
Enterprise COBOL Language Reference.

Binding (link-editing) changes with Enterprise COBOL Version 5

There have been a number of changes to binding (link-editing) Enterprise COBOL
V5 programs.
v The DFSMS Program Management Binder must be used to bind (link-edit)

Enterprise COBOL V5 applications. The Language Environment Prelinker is no
longer supported.

v Executables are program objects, not load modules. The Program Management
Loader (IEWBLDGO) is no longer supported.

v Executables cannot reside in PDS (only in PDSE) data sets.
v NOLOAD segments will not take storage at run time, unless Debug Tool,

CEEDUMP, Fault Analyzer, Application Performance Analyzer or a 3rd-party
vendor tool that uses DWARF debugging data is used

v When a program object contains any of the following programs, the binder
option RMODE(24) must be specified:
– An Enterprise COBOL program that is compiled with the RMODE(24) or

NORENT compiler options.
– A VS COBOL II program that is compiled with the NORENT option.
– An assembler program that contains a CSECT with RMODE 24.

Changes at run time with IBM Enterprise COBOL for z/OS
There are a number of changes to runtime behavior with Enterprise COBOL V5.

182 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|

|
|

|
|

|

|

If a z/OS system does not have Language Environment PTFs installed to support
Enterprise COBOL Version 5 programs, you cannot run Enterprise COBOL Version
5 programs on that system.
v Runtime option changes. For details, see “Language Environment option

changes” on page 184.
v Interoperability. Enterprise COBOL Version 5 has some restrictions with

interoperability with older versions of COBOL. For details, see “Interoperability
with older levels of IBM COBOL programs” on page 21.

v Invalid data might get different results with COBOL V5 than in earlier COBOL
versions. Some users have found that they get different results with the newer
compilers than with previous compilers, and/or that they get different results
with different OPT settings. These are normally due to invalid data that is
brought into the COBOL programs at run time. One way to find out whether
your programs will have this problem is to follow our new migration
recommendation:
1. Compile with NUMCHECK and SSRANGE, and then run regression tests.
2. Check whether there are any problems:

– If no problems found, recompile with NONUMCHECK, NOSSRANGE,
and INITCHECK. At this point, check for compile-time warnings from
INITCHECK. If there are none, then run a final test and move the
application into production.

– If problems are found, then either correct the programs and or data, or in
the case of bad data in zoned decimal data items, use the ZONEDATA
compiler option to tolerate the invalid data.

Note: You do not have to do this extra testing for programs that have already
been compiled with Enterprise COBOL V5.

v All of the AMODE and RMODE scenarios supported by Enterprise COBOL
Version 4 are now supported with Version 5, except that programs compiled
with the NORENT compiler option must be RMODE 24. After binding,
executable COBOL programs can have any of the following combinations of
AMODE and RMODE attributes:
– AMODE 31 and RMODE ANY
– Either AMODE ANY or AMODE 31, and RMODE 24
– AMODE 24 and RMODE 24

The resolved AMODE and RMODE settings depend on the COBOL language
constructs used, the compiler options specified, the binder options specified, and
the AMODE and RMODE attributes of the input object modules that are bound
into the executable module.

v For applications compiled with Enterprise COBOL V5, the compiled-in range
checks cannot be disabled at run time using the runtime option CHECK(OFF) or
NOSSRANGE .

v The ILBOABN0 interface for requesting an ABEND in a COBOL environment can
be called dynamically with Enterprise COBOL V5 and later versions. When
called by a program compiled with Enterprise COBOL compiler, it will has the
same result as calling CEE3ABD using ACTION code 1.
Your are strongly recommended to migrate and use the CEE3ABD interface,
because the CEE3ABD interface provides extra flexibility to control the level of
details provided in the CEEDUMP produced.

Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5 183

|
|
|
|
|
|
|

|

|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

When your application is called by Enterprise COBOL programs, it might
ABEND in an unexpected way if it has an older version of ILBOABN0 (before LE's
SCEELKED) statically linked. To fix the unexpected ABEND, you can follow one
of the advises below:
– Migrate to CEE3ABD.
– Relink your application with the REPLACE ILBOABN0 in the LINK step,

against LE's SCEELKED.
– Change the COBOL program to use dynamic call for ILBOABN0.

v The IGZERRE and ILBOSTP0 interfaces for managing a reusable COBOL
environment are not supported for applications containing programs compiled
with Enterprise COBOL V5.

v The IGZBRDGE macro, for converting static calls to dynamic calls, is not supported
for programs compiled with Enterprise COBOL V5.

v A new compiler option, VLR(COMPAT|STANDARD), controls how Enterprise COBOL
handles conflicts with record length in READ statements for variable-length
record files. For details, see “Variable length records - wrong length READ” on
page 185.

v VSAM record areas for reentrant COBOL programs are allocated above 16 MB,
by default. Programs that pass data in VSAM file records as CALL ... USING
parameters to AMODE 24 subprograms may be impacted. Such programs can be
recompiled with the DATA(24) compiler option, or the Language Environment
HEAP() option can be used, to ensure that the records are addressable by the
AMODE 24 programs.

v CICS System Definition (CSD) file might need to be updated to include
Enterprise COBOL V5 runtime modules. For details, see “CSD setup differences
with Enterprise COBOL V5” on page 209.

v When COBOL programs perform an IEEE (decimal or binary) floating point
division-by-zero operation, the division operation raises an IEEE divide-by-zero
exception. For details, see “Using object oriented COBOL or interoperating with
C programs” on page 188.

Language Environment option changes
There have been a number of changes to runtime options for Enterprise COBOL
Version 5 programs.

The following options have different behavior for programs compiled with
Enterprise COBOL Version 5.

Table 33. Runtime option changes with Enterprise COBOL Version 5

Option Comments

HEAP In some cases under batch, WORKING-STORAGE space (for programs
compiled with RENT) is not acquired from HEAP and therefore the
HEAP (and STORAGE) option has no effect on it.

WORKING-STORAGE under batch is not acquired from HEAP when
the COBOL V5 program is statically linked to a C, C++ or PL/I
program and the main entry point of the program object is not COBOL
V5.

CHECK(OFF) CHECK(OFF) no longer disables SSRANGE checking.

NOSSRANGE The NOSSRANGE runtime option does not disable runtime subscript
range checking for COBOL V5 or V6 programs compiled with
SSRANGE.
Note: The NOSSRANGE compiler option is still fully supported.

184 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|

|

|
|

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

Table 33. Runtime option changes with Enterprise COBOL Version 5 (continued)

Option Comments

STORAGE In a few special cases, STORAGE initial values for HEAP no longer
affect WORKING-STORAGE initial values. For details about the cases,
see the discussion of the HEAP option above.

Variable length records - wrong length READ

Originally, Enterprise COBOL V5.1 changed the behavior for wrong length READ
compared to previous COBOL compilers; but for Enterprise COBOL V5.1 with
current service applied and V5.2, that behavior can be changed via a new compiler
option, VLR(COMPAT|STANDARD) that was introduced to control whether you get the
original standard-conforming behavior of COBOL V5.1 without service applied, or
the behavior that is compatible with earlier COBOL compilers. It eases your
migration from earlier versions to Enterprise COBOL V5, if your programs have
READ statements that result in a record length conflict.

The 85 COBOL standard specifies the following rules as part of the processing of
READ statements: “If the number of character positions in the record that is read is
less than the minimum size specified by the record description entries for the file,
the portion of the record area which is to the right of the last valid character read
is undefined. If the number of character positions in the record that is read is
greater than the maximum size specified by the record description entries for
file-name-1, the record is truncated on the right to the maximum size. In either of
these cases, the READ statement is successful and an I-O status value of 04 is set
indicating that a record length conflict has occurred.”

This logic was correctly implemented in VS COBOL II, COBOL/370, COBOL for
MVS & VM (except those compilers with the following APAR fixes installed), and
Enterprise COBOL V5.1 without service applied, you would get the status value of
04 when READ statements encountered a record length conflict. However, if your
programs are compiled with one of the following compilers, you get the status
value of 00, which is the nonstandard result for READ statements.
v VS COBOL II V1.3 with PTFs for APAR PN34704 installed
v VS COBOL II V1.4 with PTFs for APAR PN38730 installed
v COBOL/370 V1.1 or V1.2 with PTFs for APAR PN36445 installed
v COBOL for OS/390 & VM, V2
v Enterprise COBOL V3 or V4

The inconsistent behavior could have inhibited the migration to Enterprise COBOL
V5. Thus, in Enterprise COBOL V5.1 with current service applied and V5.2, you
can choose to have the compatible and nonstandard behavior available with the
VLR(COMPAT) compiler option.
v If you specify VLR(COMPAT), you get File Status 00 when READ statements

encounter a record length conflict or “wrong length READ”.
If your program performs a “wrong length READ” and your code checks for
File Status=0 after reading variable-length record files, your code will take the
"zero" path, just as it did in Enterprise COBOL V4 and earlier versions.

Note: This setting can hide I/O problems that can arise with the wrong length
READ situation. Use the VLR(COMPAT) option with caution, and check for correct
READ statements.

Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5 185

|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|
|
|
|

|
|

|
|
|

|
|
|

v If you specify VLR(STANDARD), you get File Status 04 when READ statements
encounter a record length conflict or “wrong length READ”. Using this setting,
you can check for FS=04 and then add code to avoid accessing undefined data in
a record and also avoid getting protection exceptions for attempting to reference
a part of the record that was truncated.
If your program performs a “wrong length READ” and your code checks for
File Status=0 after reading variable-length record files, your code will take the
"Not zero" path. You can change your code to test for FS=0, while FS=4 and other
values will all be a failed READ. For FS=4, you can add code to avoid the bad
data in variables or protection exceptions.

Using VLR(STANDARD) can result in more reliable code and fewer I/O problems
because the file status will tell you when a “wrong length READ” might occur. A
new compiler message, MSGIGYP3178, can also help you avoid I/O problems by
telling you if a program has a possibility of a “wrong length READ”. This message
can be used to assist with migration from VLR(COMPAT) to VLR(STANDARD) by
indicating the possible "wrong length READ" that you can solve by correcting the
File Definition (FD). You can also raise the severity of the message so that the
program must be corrected in order to run. To do this, use the MSGEXIT suboption
of the EXIT compiler option to change the severity of message MSGIGYP3178 from
I (RC=0) to S (RC=12), E (RC=8), or W (RC=4). If you are not interested in seeing
this message, you can suppress the message completely.

Interoperability with older levels of IBM COBOL programs
There are some restrictions for Enterprise COBOL V5 programs to call or be called
by (interoperate) with programs compiled with earlier versions of COBOL.

Enterprise COBOL V5 programs cannot interoperate with OS/VS COBOL or VS
COBOL II NORES programs in a single application. A COBOL run unit (Language
Environment enclave) that contains an Enterprise COBOL V5 compiled program
must not contain any OS/VS COBOL or VS COBOL II NORES programs.

Note: Run units that contain only COBOL programs compiled with Enterprise
COBOL V4 or earlier versions can interoperate with OS/VS COBOL and VS
COBOL II NORES programs.

Programs compiled with Enterprise COBOL V5 can interoperate with programs
compiled with VS COBOL II or later, based on the following conditions and CALL
types:
v Static calls. Enterprise COBOL V5 compiled programs can be bound (link-edited)

with the following object modules or programs to form a single program object.
The programs within the program object can specify static calls to and from each
other.
– Programs that are compiled with VS COBOL II with the RES compiler option
– Programs that are compiled with any IBM COBOL compiler versions

subsequent to VS COBOL II
– Programs that are compiled with Enterprise COBOL V3 or V4

Note: Programs that are compiled with VS COBOL II with the NORES compiler
option specified cannot interoperate with programs compiled with Enterprise
COBOL V5.

186 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

v Dynamic calls. Program modules that contain programs compiled with VS
COBOL II with the RES option, or subsequent versions of COBOL can also
interoperate with Enterprise COBOL V5 program objects by using dynamic
CALL statements.

v DLL calls. Program modules that are compiled with earlier versions of COBOL
that supported DLL linkage can interoperate with Enterprise COBOL V5
program objects by using DLL linkage.

Error behavior changes for incorrect programs
Incorrect COBOL programs might behave differently with Enterprise COBOL V5
than with prior versions. You must consider more vigorous testing for migrating to
Enterprise COBOL V5 than you did for migrating to Enterprise COBOL V4.
v Programs that use unsupported (yet undiagnosed) COBOL language syntax.
v Programs that move data to and from data items that at run time contain values

not conforming to the PICTURE clause in the data description entry. For
example:
– A fullword binary item with picture S9(6) USAGE BINARY, which contains an

oversize value of +123456789 (unless the TRUNC(BIN) option was specified)
– A two-byte packed-decimal item with picture S99 PACKED-DECIMAL, which

contains an oversize value of 123 (for example, 123C in hexadecimal).
– A packed-decimal or zoned-decimal item that contains an invalid or

non-preferred sign, which does not conform to the sign requirements of the
data description entry.

v Programs with undiagnosed subscript range errors (when the SSRANGE compiler
option was not specified), that reference storage outside the storage allocation
for the base data item.

v Applications with low-level dependencies on specific generated code sequences,
register conventions, or internal IBM control blocks might behave differently
with Enterprise COBOL V5 than with prior versions. The information such as
PROGRAM-ID, COMPILED TIME, and COMPILED DATE included in the
initialization code of Enterprise COBOL V4 or earlier is not included in the
initialization code of Enterprise COBOL V5, so the program it depends on might
behave differently with Enterprise COBOL V5.

v Not all incorrect programs are diagnosed as incorrect. For example, see the
following program that sets the value of an ODO object to outside of the legal
range:
77 VAR1 COMP-3 PIC 9(3).
01 X.

02 VAR2 PIC X OCCURS 0 to 1 depending on VAR1.

MOVE 128 to VAR1
MOVE ALL ’C’ to X *> This is illegal!

Results:
– For V2, V3 and V4: 128 bytes of 'C' were moved
– For V5R1: 1 byte of 'C' and 127 bytes of junk were moved

v Programs with parameter length mismatches:
WORKING-STORAGE SECTION.
. . .
77 GRP1 PIC X(100). *> The last item in WORKING-STORAGE SECTION
PROCEDURE DIVISION.
. . .

CALL ’SUBP’ USING GRP1.

Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5 187

|

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|

PROGRAM-ID. SUBP.
LINKAGE SECTION.
01 GRP2 PIC X(500).
PROCEDURE DIVISION USING GRP2

MOVE ’STUFF’ TO GRP2(300:20) *> This is illegal!

Results:
In the example above, GRP1 and GRP2 lengths do not match. The MOVE to
GRP2 results in an overlay of storage following the last data item in
WORKING-STORAGE in the calling program.
– For V2, V3 and V4: The illegal MOVE did not result in a failure because there

was usually unused storage after the last data-item in WORKING-STORAGE
(see CALLER), so the overwrite went undetected.

– For V5: The file control blocks immediately follow the last data-item in
WORKING-STORAGE. Therefore, the file-status information in the CALLER
gets overlaid, which can subsequently change the flow of the program.

v Programs using zoned decimal data (numeric with USAGE DISPLAY) with bad
zone bits in numeric comparisons. In this example, byte 3 of VAR2 is x'40' that
has zone bits x'4', which is invalid; all zone bits must be x'F'.
WORKING-STORAGE SECTION.
01 VAR1 PIC X(5) VALUE ’00 0’.

02 VAR2 REDEFINES VAR1 PIC 9(5).
. . .

IF VAR2 = ZERO
DISPLAY "EQUAL TO ZERO"

ELSE
DISPLAY "NOT EQUAL TO ZERO"

END-IF.

Results:
– For V4 with NUMPROC(MIG) and V5.1 with OPT(0), the program displays

"EQUAL TO ZERO"
– For V4 with NUMPROC(PFD) or NUMPROC(NOPFD), and V5.1 with OPT(1)

or OPT(2), the program displays "NOT EQUAL TO ZERO"
If your data doesn't always have the correct zone bits in zoned decimal data
items, compile with the ZONEDATA(MIG) compiler option so that the zone bits
will always be ignored.
Also, make sure that the formatting of the example is correct (that is, level 2
data items indented, correct columns, and so on), and add a comment to show
what the hex value is:
01 VAR1 PIC X(5) VALUE ’00 0’. <* Value x’F0F040F0’

Using object oriented COBOL or interoperating with C
programs

Some programming languages, such as Java and C, expect division-by-zero
operations to result in infinity. Others, such as PL/I and COBOL, expect
division-by-zero operations to cause an exception. COBOL programs set the
processor to run in a mode whereby division-by-zero operations cause an
exception. If a COBOL program is object oriented and invokes a Java method or if
a COBOL program interoperates with a C program, and if the Java or C program
executes a division-by-zero operation, the program could terminate.

188 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|

|

|

|

|
|
|
|
|
|
|

To avoid program termination, you can follow the instructions in the IGZXDIVZ
sample to compile and link the condition handler into the SCEERUN data set and
use the Language Environment runtime option USRHDLR(IGZXDIVZ) with the
affected application.

Debug information changes with IBM Enterprise COBOL Version 5
Programs compiled with IBM Enterprise COBOL Version 5 will have different
debug information than that of programs compiled with previous versions of the
compiler.

IBM Enterprise COBOL Version 5 solves the dilemma of debugging information. In
the past you had 2 choices:
v Have the debug data always with the executable at a cost of a large load

footprint, or
v Have separate debug data but also have the challenge of keeping it

synchronized with the application and finding it when needed.

Now you have the best of both worlds. With NOLOAD debug segments in the
program object, the debug data does not increase the size of the loaded program, it
always matches the executable and is always available so there is no need to
search lists of data sets.

There have been changes to the TEST compiler option used to generate debuggable
versions of your application and to the NOTEST option.
v When the TEST option is specified, DWARF debug information is included in the

application module.
v If the SOURCE suboption is specified, the DWARF debug information includes the

expanded source code, and the compiler listing is not needed by IBM Debug
Tool. When the TEST(NOSOURCE) compiler option is specified, the generated
DWARF debugging information does not include the expanded source code.

v You can use the NOTEST(DWARF) compiler option to include basic DWARF
debugging information in the program object. You cannot debug such programs
with Debug Tool, but you can get NOTEST optimization and still enable
application failure analysis tools, such as CEEDUMP output and IBM Fault
Analyzer.

v To have no debugging information in the program object, use the
NOTEST(NODWARF) option.

When debugging your COBOL programs, you will find that there have been a
large number of improvements and behavior changes introduced with Enterprise
COBOL V5. For details about changes in debugging with IBM Debug Tool, see
“Debug Tool changes with IBM Enterprise COBOL Version 5” on page 202.

WORKING-STORAGE SECTION changes
You can use the following method to locate the WORKING-STORAGE in
Enterprise COBOL V5 programs at run time.

To find the start of WORKING-STORAGE in COBOL V5, you need to know how
to locate the PPA4 (Program Prologue Area 4) in a dump.

How to find the PPA4 (Program Prolog Area 4) in a dump?
1. Find the start of the program in the dump from the traceback.

Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5 189

|
|
|
|

|

|
|

|
|

|

|

2. At the starting address + x'0C' is an offset value. This is the offset to the PPA1
from the start of the program.

3. Starting address + PPA1 offset = PPA1.
4. Go there in the dump.
5. At PPA1 + x'04' is an offset value. This is the offset to the PPA2 from the start

of the program.
6. Starting address + PPA2 offset = PPA2.
7. Go there in the dump.
8. At PPA2 + x'08' is an offset value. This is the offset to the PPA4 from the PPA2

address.
9. PPA2 + PPA4 offset = PPA4.

10. Go there in the dump. You are now at the PPA4.

Next, you need to know the layout of the PPA4.

PPA4 layout

The major fields in PPA4 that you need are as follows:
Offset Length Description
X’08’ 4 Address of NORENT static A(NORENTstatic)
X’0C’ 4 Signed offset from WSA to 32-bit RENT static Q(RENTstatic)
X’10’ 4 Signed offset from 32-bit RENT static to A(DATA24_31_address_cell-RENTstatic)

program static address cell.
Note: You need to dereference (get the value in storage at) the address cell to
get the address of the program static area.

X’14’ 4 Offset of user code from PPA4 A(Code-PPA4)
X’18’ 4 Length of user generated code Code Length
X’1C’ 4 Length of NORENTstatic area Length NORENTstatic
X’20’ 4 Length of RENTstatic area Length RENTstatic
X’24’ 4 Length of DATA31 area Length DATA24_31
X’28’ 4 Offset of program name from PPA4 A(CUName-PPA4)
X’2C’ 4 Offset of WORKING-STORAGE (from Q(RENTstatic) or A(DATA24_31_address_cell-RENTstatic))
X’30’ 4 Length of WORKING-STORAGE
X’34’ 1 Byte with bit to indicate if the program has EXTERNAL data items

For information about each PPA4 offset, length, and description, see the COBOL
V5 32-bit PPA4 layout table in the z/OS Language Environment Vendor Interfaces.

Next, you need to know some terminology.

Terms to know

NORENT static area
This storage area is allocated in the executable for each program that was
compiled with NORENT. A NORENT program’s WORKING-STORAGE
will be located here.

LE’s writable static area (WSA)
Every COBOL V5 program object (executable) has this storage area.

RENT static area
This storage area is allocated inside the WSA for every program that is
statically bound into the executable and compiled with RENT. Each
program has their own RENT static area. A program’s
WORKING-STORAGE may or may not be located here.

Program static area
This storage area is allocated outside of the WSA only if certain conditions
are met. In those cases, the program’s WORKING-STORAGE will be
located here, instead of in the RENT static area.

190 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|

|

|

|
|

|

|

|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ceev100/cv3pl.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ceev100/cv3pl.htm

Next, you need to understand that there are three locations where
WORKING-STORAGE can reside.

Explanation of the areas where WORKING-STORAGE can reside

There are three different locations where WORKING-STORAGE can reside:
v Inside the program object (executable). All programs compiled with the

NORENT option have a NORENT static area reserved within the executable and
WORKING-STORAGE resides here.

v All programs compiled with the RENT option have a RENT static area allocated
inside LE’s WSA (writable static area). WORKING-STORAGE could reside here.

v Instead of being located in the RENT static area, some COBOL V5 or later RENT
programs have their WORKING-STORAGE allocated outside of LE’s WSA, in an
area called the program static area.

The rules for determining where WORKING-STORAGE resides are located in the
next section.

The picture below shows how storage is laid out for RENT programs whose
WORKING-STORAGE resides in the program static area:

Program Object (Executable)
(Has two programs A & B statically bound.)

|---|
| |
| LE's WSA (writable static area) |

	Program A - RENT static area			

		(Corresponds to the STATIC		
		MAP in Program A's listing)		

	Program B - RENT static area			

		(Corresponds to the STATIC		
		MAP in Program B's listing)		

Program A – program static area				

	(Corresponds to the WORKING-STORAGE			
	MAP (or the WSA 24 MAP) in			
	Program A's listing)			

Program B – program static area				

	(Corresponds to the WORKING-STORAGE			
	MAP (or the WSA 24 MAP) in			
	Program B's listing)			

Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5 191

|
|

|

|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Once you understand the three areas where WORKING-STORAGE could reside,
you need to know how to determine where a program’s WORKING-STORAGE
actually does reside.

How to determine the area where WORKING-STORAGE is
located?

Table 34. Area where WORKING-STORAGE is located

COBOL versions Compiler options

Where is
WORKING-STORAGE
located?

COBOL V5 NORENT In the program's NORENT
static area

RENT, DATA(31) In the program's RENT static
area inside the WSA

RENT, DATA(24) or RENT,
WSOPT

In the program's program
static area outside the WSA

Once you know what area the WORKING-STORAGE resides in, then you will
know how to find it.

How to find WORKING-STORAGE in a dump?

Table 35. How to find the PPA4, NORENT static area, LE’s WSA, RENT static area, and
program static area in a dump?

What to find? How to find it in a dump?

PPA4 See the instructions above.

NORENT static area The address is located in storage at <PPA4 +
x'08'>

LE’s WSA The address is located in storage at
<CEECAA (or R12) + x'1F4'>.
This is called CEECAARENT in a dump.

RENT static area The address is located in storage at
<The address in storage at CEECAA (or R12)
+ x'1F4'> +
<the offset in the program’s PPA4 + x'0C'>

Program static area The address is located in storage at
<The address in storage at CEECAA (or R12)
+ x'1F4’> +
<the offset in the program’s PPA4 + x'0C'> +
<the offset in the program’s PPA4 + x'10'>

Once you find these areas in a dump, then you can compare that to the compile
listing.

In a COBOL listing:
v The STATIC MAP shows the layout of the RENT static area or the NORENT

static area.
v The WORKING-STORAGE MAP or the WSA 24 MAP shows the layout of the

program static area.

192 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|

|
|

||

||

|
|
|

|||
|

||
|

|
|
|
|
|

|
|

|

||
|

||

||

||
|

||
|
|

||
|
|
|

||
|
|
|
|
|

|
|

|

|
|

|
|

RELATED TASKS

Reading LIST output (Enterprise COBOL Programming Guide)

RELATED REFERENCES

Example: Program prolog areas (Enterprise COBOL Programming Guide)
Common interfaces and conventions (z/OS Language Environment Vendor Interfaces)

Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5 193

|
|

|
|
|

|

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ceev100/convnt.htm

194 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 16. Adding Enterprise COBOL Version 5 programs to
existing COBOL applications

When you add an Enterprise COBOL V5 program to an existing application, you
are either recompiling an existing program with Enterprise COBOL V5 or
including a newly written Enterprise COBOL V5 program.

Note: You should use this Migration Guide only if you have completed the
runtime migration to Language Environment. This means that the following
conditions have been met:
v The Language Environment data set SCEERUN is installed in LNKLST or

LPALST.
v There are no instances of COBLIB, VSCLLIB, or COB2LIB in LNKLST or

LPALST.
v There are no instances of COBLIB, VSCLLIB, or COB2LIB in JCL STEPLIB or

JOBLIB statements or in CICS startup JCL.
v All statically bound runtime library routines for programs that are compiled

with NORES have been REPLACEd with routines from Language Environment.
v IGZEBST bootstrap modules for VS COBOL II programs that are compiled with

RES were either linked with the VS COBOL II runtime version of IGZEBST that
has APAR PN74000 applied, or IGZEBST was REPLACEd with IGZEBST from
Language Environment.

If these steps have not been completed, please first complete all runtime migration
activities in the Enterprise COBOL V4.2 Compiler and Runtime Migration Guide at
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf prior to following the
steps here.

When you add Enterprise COBOL V5 programs to your existing applications, you
have the ability to:
v Upgrade your existing programs incrementally, as your shop's needs dictate
v Use Language Environment condition handling

If you have a program object that includes a COBOL program linked with C, C++,
or Enterprise PL/I programs, the program object has slightly different behavior
when the COBOL program is changed to Enterprise COBOL V5. This occurs when
such program objects are fetched (that is, using either C fetch or PL/I fetch) more
than once. In the subsequent fetches, external and static variables in these other LE
languages may retain their last used state, following COBOL rules, instead of
getting their initial values. With prior versions of COBOL linked in, the C, C++
and PL/I programs would retain C/C++ or PL/I behavior.

Using Language Environment with Enterprise COBOL V5 and VS
COBOL II programs

When running a mixture of VS COBOL II programs and Enterprise COBOL V5
programs:
v A current version of IGZEBST is required:

– For statically CALLed programs in CICS, you will need to replace IGZEBST
in applications with VS COBOL II programs with the IGZEBST from LE with
the PTFs for APAR PI33330 installed.

© Copyright IBM Corp. 1991, 2019 195

|
|
|

|
|

|
|

|

|
|
|

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

Note: IGZEBST from LE with the PTFs for APAR PI33330 installed can also
be used with any COBOL programs VS COBOL II and later without COBOL
V5 or V6 programs.

– For dynamically CALLed CICS programs, you just need to install the PTFs
for APAR PI25079 on SCEERUN.

Note: For statically CALLed programs in non-CICS, performance will be
better if you replace IGZEBST in applications with VS COBOL II programs
with the IGZEBST from LE with the PTFs for APAR PI33330 installed. It is
not required. There is no issue with IGZEBST for dynamically called
programs in non-CICS for calling VS COBOL II programs from COBOL V5 or
V6 programs.

v A current version of CEEBETBL, the Language Environment externals table, is
required. If you are including object code bound some time ago with your new
COBOL V5 object code, you might be indirectly including an old version of
CEEBETBL.
If the length of CEEBETBL you bind is less than x'28' (or the length of the
CEEBETBL in the current SCEELKED library), it is old and needs to be replaced,
or you will encounter runtime abends or a terminating runtime message.
If you rebind older object code with COBOL V5 as part of your migration, it is
recommended that you specifically INCLUDE a current copy of CEEBETBL prior
to INCLUDEs of the older object code, taking care that you do not inadvertently
make CEEBETBL the entry point.

AMODE restrictions with Enterprise COBOL Version 5 programs

AMODE 24 execution of Enterprise COBOL V5.2 programs is supported in all the
same cases as in earlier Enterprise COBOL compilers.

Note: To run COBOL V5 programs with AMODE 24, you must compile all COBOL
programs with Enterprise COBOL V5.1.1 or later versions; or Enterprise COBOL
V4.2 or earlier versions. If any component of a program object is compiled with
Enterprise COBOL V5.1.0, the program object must run in AMODE 31. COBOL
programs that run with AMODE 24 must be linked with the binder option
RMODE(24).

Run time differences with Enterprise COBOL Version 5 programs

You cannot mix Enterprise COBOL V5 programs with:
v OS/VS COBOL programs. You must migrate to Enterprise COBOL. To find any

OS/VS COBOL programs you can:
– use the LMA tool of Debug Tool to scan load libraries for OS/VS COBOL

programs
– Use the free COBOL Analyzer from http://cbttape.org/cbtdowns.htm to scan

load libraries for OS/VS COBOL programs. It is named as File # 321 COBOL
Analyzer from Roland Schiradin & post processor on that web page.

– install the fix for APAR PM86742 to your Language Environment and look for
a Warning message about detected OS/VS COBOL programs at run time

v VS COBOL II NORES programs. You must migrate to Enterprise COBOL.

The ILBOABN0 interface for requesting an ABEND in a COBOL environment can be
called dynamically with Enterprise COBOL V5 and later versions. When called by
a program compiled with Enterprise COBOL compiler, it will have the same result
as calling CEE3ABD using ACTION code 1.

196 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

http://cbttape.org/cbtdowns.htm

Your are strongly recommended to migrate and use the CEE3ABD interface, because
the CEE3ABD interface provides extra flexibility to control the level of details
provided in the CEEDUMP produced.

When your application is called by Enterprise COBOL programs, it might ABEND
in an unexpected way if it has an older version of ILBOABN0 (before LE's
SCEELKED) statically linked. To fix the unexpected ABEND, you can follow one of
the advises below:
v Migrate to CEE3ABD.
v Relink your application with the REPLACE ILBOABN0 in the LINK step, against

LE's SCEELKED.
v Change the COBOL program to use dynamic call for ILBOABN0.

RMODE restrictions with Enterprise COBOL Version 5 programs
v Reentrant programs may be RMODE 24 or RMODE ANY
v Non-reentrant programs must be RMODE 24.

AMODE and RMODE considerations

Static calls between AMODE 24 and AMODE 31 programs are not supported by
Enterprise COBOL V5.1.0 programs. Static calls between AMODE 24 programs and
Enterprise COBOL V5.1.1 and V5.2 programs are supported for the cases where
AMODE 24 is supported for Enterprise COBOL V5.1.1 and V5.2 programs.

Note: There was not an official release of Enterprise COBOL called V5.1.1, but the
modification level of V5.1.0 was updated by service to show that AMODE 24
capability was added to that service level of the compiler.

In addition, NORENT programs can no longer reside above the line. The following
diagram shows the types of calls that can be dynamic or static and those that can
only be dynamic. It also shows configurations of data and program location with
respect to the 16 MB line.

Chapter 16. Adding Enterprise COBOL Version 5 programs to existing COBOL applications 197

|
|
|

|
|
|
|

|

|
|

|

|
|
|
|

|
|
|

Note: For other AMODE 24 programs, no calls are allowed between Enterprise
COBOL V5 programs and either OS/VS COBOL or VS COBOL II NORES
programs.

Enterprise

COBOL V5

P5

COBOL

OS/390

NORENT

P1

NORENT

RMODE (ANY)

P1 DATA

Enterprise

COBOL V5

NORENT

P2

NORENT

RMODE (AUTO|24)

P2 DATA

Enterprise

COBOL V5

P3

RENT

DATA(31)

RENT

DATA(24)

16-Megabyte line

P3 DATA

P5 DATA

VS COBOL II

NORENT

P6

P6 DATA

VS COBOL II

NORENT

P2

P2 DATA

Legend

dynamic or static call

dynamic call

Figure 5. Valid dynamic and static calls between different AMODE and RMODE COBOL
programs

198 Enterprise COBOL for z/OS, V5.2 Migration Guide

Part 5. Enterprise COBOL migration and other IBM products

Enterprise COBOL for z/OS, V5 gives you access to CICS, DB2, IMS and other
data and transactional systems. It can also be used with Debug Tool.

© Copyright IBM Corp. 1991, 2019 199

200 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 17. Debug tool

Debug Tool is a program analyzer that runs within Language Environment and
supports a number of high-level languages, including Enterprise COBOL.

Debug Tool provides support for VS COBOL II Release 3.0 and all subsequent
COBOL compilers.

Initiating Debug Tool
When you use Debug Tool, the application program starts first and the Language
Environment TEST runtime option controls the invocation of Debug Tool.

You can also invoke Debug Tool directly from your application by using the
Language Environment callable service CEETEST. A brief description of these two
methods follows.

TEST runtime option
The Language Environment TEST runtime option is used to determine if
Debug Tool is to be invoked when an application program is run with
Language Environment. Invocation can be immediate or deferred, depending
on the option subparameters.

The IBM-supplied default is NOTEST. This specifies that Debug Tool is not to
be initialized to process the initial command string nor is it to be initialized for
any program condition that might arise when you run the program. However,
if debugging services are needed, you can invoke Debug Tool by using the
library service CEETEST.

For detailed information about the Language Environment TEST option
subparameters and suboptions, see the Language Environment Programming
Reference.

CEETEST
Language Environment provides callable service CEETEST to allow Debug
Tool to gain control, and to specify a string of commands to be passed to
Debug Tool. Calling this service, causes Debug Tool to be initialized and
invoked. (If Debug Tool is already initialized, then this re-entry is similar to a
breakpoint.)

When using CEETEST to invoke Debug Tool, the string parameter containing a
command list is optional. If you do use a command list, the commands are
passed to Debug Tool and executed. If the command list does not contain any
GO, GOTO, STEP, or QUIT commands, commands will then be requested from
the terminal or the primary commands file. If the GO command is encountered
at any point (command list, terminal, or commands file), Debug Tool returns to
the application program at the point following the service call and your
program continues running.

For detailed information and examples of the Language Environment callable
service CEETEST, see the Language Environment Programming Reference.

© Copyright IBM Corp. 1991, 2019 201

Debug information changes with IBM Enterprise COBOL Version 5
Programs compiled with IBM Enterprise COBOL Version 5 will have different
debug information than that of programs compiled with previous versions of the
compiler.

IBM Enterprise COBOL Version 5 solves the dilemma of debugging information. In
the past you had 2 choices:
v Have the debug data always with the executable at a cost of a large load

footprint, or
v Have separate debug data but also have the challenge of keeping it

synchronized with the application and finding it when needed.

Now you have the best of both worlds. With NOLOAD debug segments in the
program object, the debug data does not increase the size of the loaded program, it
always matches the executable and is always available so there is no need to
search lists of data sets.

There have been changes to the TEST compiler option used to generate debuggable
versions of your application and to the NOTEST option.
v When the TEST option is specified, DWARF debug information is included in the

application module.
v If the SOURCE suboption is specified, the DWARF debug information includes the

expanded source code, and the compiler listing is not needed by IBM Debug
Tool. When the TEST(NOSOURCE) compiler option is specified, the generated
DWARF debugging information does not include the expanded source code.

v You can use the NOTEST(DWARF) compiler option to include basic DWARF
debugging information in the program object. You cannot debug such programs
with Debug Tool, but you can get NOTEST optimization and still enable
application failure analysis tools, such as CEEDUMP output and IBM Fault
Analyzer.

v To have no debugging information in the program object, use the
NOTEST(NODWARF) option.

When debugging your COBOL programs, you will find that there have been a
large number of improvements and behavior changes introduced with Enterprise
COBOL V5. For details about changes in debugging with IBM Debug Tool, see
“Debug Tool changes with IBM Enterprise COBOL Version 5.”

Debug Tool changes with IBM Enterprise COBOL Version 5
Programs compiled with IBM Enterprise COBOL Version 5 will have many
debugging advantages over programs compiled with previous versions of COBOL
when debugged with Debug Tool.

For details about Debug Tool interfaces with COBOL applications, see the
documentation available at: http://www-01.ibm.com/software/awdtools/
debugtool/library/.

Most of these differences apply to all debugging modes: full screen, batch, and
remote. Complete details of Debug Tool commands are described in Debug Tool
References and Messages.

202 Enterprise COBOL for z/OS, V5.2 Migration Guide

http://www-01.ibm.com/software/awdtools/debugtool/library/
http://www-01.ibm.com/software/awdtools/debugtool/library/

DESCRIBE ATTRIBUTES commands

The PIC string shown in Debug Tool appears as it is specified in the source and not
normalized as it was prior to Enterprise COBOL Version 5.

Level members are shown as written in the source code and not normalized as
they were prior to Enterprise COBOL Version 5.

There are clearer data descriptions. For example, you could now see:
S9(5) SIGN LEAD SEP DISP

instead of
S9(5) DSLS

DESCRIBE ATTRIBUTES shows the length and type of symbolic characters with
Enterprise COBOL Version 5. With prior versions of the compiler, only zeros were
shown.

For condition names (level 88) , an address of 000000000 is no longer shown.

There is more compact and clearer output for an array and array element. For
example:
v INDEX is displayed for type instead of IX
v The level 00 is not displayed
v There is no repetition of the type for each array element, the element type is

shown only once.

Debug Tool no longer displays an address for DESCRIBE ATTRIBUTES of a register,
such as %GPR0, because registers do not have addresses.

LIST command and AUTOMON output

LIST or AUTOMON of tables always shows the new Debug Tool, V12.1 option SET
LIST BY SUBSCRIPT format.

When listing a record or group that contains a zero length ODO table, any data
items that follow that table within the record or group are displayed. Previously,
they were not.

No message is displayed for program entry when AUTOMONITOR is active.

Debug Tool variables of category Alphanumeric will be displayed within single
quotation marks. For example, if you execute LIST %SYSTEM, you will now see
%SYSTEM = ’MVS’.

The output of LIST %HEX has improved. The output of LIST %HEX(var) no longer
shows %HEX in the output. Now the output is SBIN0_5 = X’00003039’ instead of
%HEX (SBIN0_5) = X’00003039’. The X’ indicates a hex representation.

The output of LIST varname no longer includes the block qualification. For
example, the result could be varname = 5 instead of block_name ::>varname = 5.

Chapter 17. Debug tool 203

The output of the LIST NAMES command now displays 01 and 77 level data items.
In previous versions, all data items, including subordinate data items within a
record or group hierarchy were shown. To see the entire expanded structure, use
DESCRIBE ATTRIBUTES varname.

LIST NAMES LABEL now only displays labels in active blocks in nested programs.
Previously, all labels for the program were displayed regardless of which block you
were in.

LIST TITLED output for nested programs is modified. Now only variables in active
blocks are displayed.

The formatted display of an array after the LIST command has changed for
COBOL. When the elements of an array are groups, all members of that group are
listed together for a given element, followed by the members of the group for the
following element, and so on. Previously, a given member would be listed across
all array elements, and then the next member of the group would be listed across
all array elements. The keyword SUB is no longer displayed.

AUTOMONITOR output shows ADDRESS OF var and LENGTH OF var as single
references.

AT APPEARANCE and LIST NAMES CUS has changed. Debug Tool is aware of cus. For
example, if the main program object in your application is MYMAIN, the main
program is MYMAIN, and the second program in the program object is MYSUB1, you
can stop at MYMAIN::>MYMAIN 1, you will see the following new behaviors:
v When you issue LIST NAMES CUS, the display shows the program object MYMAIN,

and both the main program MYMAIN and the subprogram MYSUB1.
v When you issue an AT APPEARANCE breakpoint for MYSUB1, the breakpoint is

accepted.

Enterprise COBOL V5 assigns a save area for each nested program. You can see
these save areas with commands, such as LIST CALL.

MOVE, COMPUTE, IF commands

The MOVE and COMPUTE commands in Debug Tool have expanded to allow the same
data types as the compiler for receivers and senders. This enhancement removes
previous restrictions on the use of those commands.

The IF command has been expanded. Allowable comparisons for relational
conditions are expanded in Debug Tool with Enterprise COBOL V5. The allowable
comparison for relational conditions (involving data items, literals, and figurative
constants) are implemented according to the Enterprise COBOL Language
Reference.

Index changes also improve the use of these commands:
v There is relative subscripting of index names with Enterprise COBOL Version 5.
v To conform to COBOL language rules, you can no longer index an array with

index data items.
v To conform to COBOL language rules, you can no longer use IN or OF qualifiers

for an index name.

204 Enterprise COBOL for z/OS, V5.2 Migration Guide

STEP command

You can STEP and set breakpoints for the WHEN phrase of EVALUATE.

STEP OVER with PERFORM is now supported.

Support for COBOL types

Debug Tool now supports the correct maximum value in all binary data types. For
example, an 8-byte, unsigned COMP-5 data item can contain a maximum value of
18,446,744,073,709,551,615, which is 20 digits.

INDEX (IX) and Arrays

With Enterprise COBOL V5, you cannot use a data item of type INDEX as a
subscript. For example, if you have defined a data item as 77 IXDI1 USAGE IS
INDEX, you cannot execute LIST ARR(IXDI1).

Index names are in the debug infomation in the same way as top-level (01 or 77)
data items, although index names do not have level numbers. In earlier versions of
Enterprise COBOL, index names are shown in the debug information along with
table elements, like children of the array to which they belong. In Enterprise
COBOL V5 index names are not shown when table information is listed, they are
only shown when listed explicitly by name. This change is reflected in the output
from the following commands:
v LIST NAMES
v LIST TITLED
v DESCRIBE ATTRIBUTES (with no argument)

With Enterprise COBOL V5, you cannot qualify an INDEX name using the name of
the array to which it belongs. You also can no longer qualify a containing group or
record name, as if it were a subordinate data item. For example IX3 of REC1. This
was possible with earlier versions of Enterprise COBOL.

Enterprise COBOL V5 supports an increment (+) or decrement (-) operator as part
of the INDEX of an array. Enterprise COBOL V4 did not support this.

With Enterprise COBOL V5 programs Debug Tool defaults to 1 if you do not
specify the index of an array. With previous versions, Debug Tool listed all
members of the array. If the array is declared as shown below, and you issue LIST
X, Debug Tool only displays the first element in the array ARR(1) as LIST X(1).
LIST ARR(n) will show X and Y for the specified index, and LIST ARR will show X
and Y for all members.
05 ARR OCCURS 10
10 X PIC 99
10 Y PIC 99

For previous versions of Enterprise COBOL, when you list a single element of an
array, the format of the output is as if it is an array of size 1. For Enterprise
COBOL V5, the output is the same as a variable of the given type, not as an array
of size 1.

Other changes

The AT CALL entry name is not supported for Enterprise COBOL V5.

Chapter 17. Debug tool 205

Several changes are implemented for the DESCRIBE CUS command. These changes
are:
v New compiler name: IBM COBOL 5.2.0
v Time Stamp is displayed: * Compiler: IBM COBOL 5.2.0 2014/11/27 13:08
v There have been many changes to compiler options.
v The type of linkage is displayed: * Its linkage is Language Environment

FastLink. This is the default linkage for the compiler.

Line numbering with the NUM option and sequence of programs is different with
Enterprise COBOL V5. In prior versions, a batch compile (sequence of programs in
a single source) with NUM and NOLIB the line numbers start over in the second
program. With Enterprise COBOL V5 the NOLIB option has been removed. The
compiler behaves as though LIB is always enabled and therefore the second
program in a sequence has line numbers that continue from those of the first
program.

Display of National data items will include N with Enterprise COBOL V5. For
example: listing of 01 nat pic N(5) value "abcde" national is NAT= N’abcde’ V4:
NAT = ’abcde’.

The number of digits displayed in arithmetic expressions is different with
Enterprise COBOL V5. The number of digits resulting from arithmetic operations
are defined in the Enterprise COBOL Programming Guide.

Sign is handled differently with Enterprise COBOL V5. The result of an arithmetic
expression will have a sign if either operands are signed. In earlier versions, the
sign of the result depended on the answer. The exception is the case of results from
subtraction and unary minus which are always signed to guarantee correctness of
the result.

If the program being debugged was compiled with the QUALIFY(EXTEND)
option, Debug Tool will apply the new name resolution rules in any command that
references a data item, for example, LIST, MOVE, COMPUTE, and other
commands. This makes Debug Tool consistent with the compiler when it comes to
resolving data item references.

Debug Tool has been updated to handle data items that have been defined with
the VOLATILE keyword, allowing such data items to be used in all of the same
commands as nonvolatile data items.

Full Screen Mode changes with IBM Enterprise COBOL V5
These changes apply to the Full Screen Mode commands and functions.

The following commands are different between Enterprise COBOL V5 programs
and those of previous compilers:
v PANEL LISTINGS and PANEL SOURCES. Both commands show the program name.
v SET DEFAULT LISTINGS. The source listing information is embedded in the object

for COBOL V5 programs.
v SET DYNDEBUG OFF. COBOL V5 compiler does not support compiled-in hooks.

You must have SET DYNDEBUG ON if you want to step or set breakpoints in a
COBOL V5 program.

206 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|

|
|
|
|
|

|
|
|

v SET LIST BY SUBSCRIPT. With COBOL V5 programs, Debug Tool displays arrays
as if LIST BY SUBSCRIPT ON is always enabled. With Enterprise COBOL V4
programs, the default display on an array was SET LIST BY SUBSCRIPT OFF.

v SET PROGRAMMING LANGUAGE. The programming language for COBOL V5 is
COBOL.

v SET SOURCE. The source listing information is embedded in the object. An error
message is displayed when you issue this command for a COBOL V5 program.

Debug Tool changes for remote mode with IBM Enterprise
COBOL V5

This section lists changes that apply to the remote debugger interfaces.

The changes are:
v With Enterprise COBOL V5, nodes in the tree of a monitored expression show

the level number, for example, 05 VAR1. With Enterprise COBOL V4, it showed
VAR1.

v With Enterprise COBOL V5, PIC is shown as part of the type information, for
example, 05 SBIN1 PIC 99 COMP.

v With Enterprise COBOL V4, array type was shown as ARRAY. With Enterprise
COBOL V5, it is shown by using appropriate COBOL terminology such as, 9
COMP OCCURS 2. This matches the behavior of batch/Full Screen Mode.

v With Enterprise COBOL V5, record types are shown as known to the language.
For example, ALPHANUMERIC GROUP or NATIONAL GROUP. With Enterprise COBOL
V4, record types were shown as CHARACTER, STRUCT, or ARRAY

v With programs compiled by Enterprise COBOL V5, array subscripts can be
separated by a semicolon. This was not allowed for programs compiled with
Enterprise COBOL V4 and is not allowed in full screen mode.

v With programs compiled by Enterprise COBOL V5, nested programs will now
show in the Debug View.

v COBOL language provides a DECLARATIVES section to handle exceptional
conditions. With Enterprise COBOL V5, when a DECLARATIVES section gets
control in a Debug Tool session, the debug view shows a separate frame for it.

Chapter 17. Debug tool 207

208 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 18. CICS conversion considerations for COBOL
source

To run programs under CICS, you need to be familiar with the required compiler
options. You also need to take migration steps to run Enterprise COBOL programs
under CICS, or to upgrade programs to use the integrated CICS translator.

Consider the following topics:
v “CSD setup differences with Enterprise COBOL V5”
v “DFHRPL setup differences with Enterprise COBOL V5” on page 210
v “Compiler options for programs that run under CICS” on page 211
v “Migrating from the separate CICS translator to the integrated translator” on

page 212
v “Static calls from COBOL V5 programs to VS COBOL II programs under CICS”

on page 214

OS/VS COBOL restriction

OS/VS COBOL programs no longer run under CICS. Any OS/VS COBOL
programs to be run under CICS must be upgraded to Enterprise COBOL.

CSD setup differences with Enterprise COBOL V5
With the following CICS TS versions, CICS uses system autoinstall to install the
required Enterprise COBOL V5 runtime modules so you do not need to update the
CICS System Definition (CSD) file:
v CICS TS V5.4 and later
v CICS TS V5.3 with the PTF for APAR PI60389 applied
v CICS TS V5.1 and V5.2 with PTFs for APARs PI60388 and PI73184 applied

Without those PTFs applied or for earlier CICS TS versions, you must update the
CSD file to include Enterprise COBOL V5 runtime modules as follows.

The normal procedure for setting up CICS involves updating the CICS System
Definition file to define program modules that will be used under CICS. New
library modules must be added for Enterprise COBOL V5. These modules are
contained in the Language Environment data set SCEERUN:
v CEEEV004

v IGZXLPKA

v IGZXD24

v IGZXDMR

v IGZLLIBV

v IGZXLPKC

v IGZXLPIO

v IGZXAPI

v IEWBNDD

v IEWBIND

v CDAEEDE

© Copyright IBM Corp. 1991, 2019 209

|
|
|

|

|

|

|
|

v IGZXLPKB

v IGZXLPKD

v IGZXLPKE

v IGZXLPKF

v IGZXLPKG

v IGZXPK2

The member CEECCSD in the Language Environment SCEESAMP data set provides an
example of this definition file. You can also add the following lines to your existing
CSD file:
DEFINE PROGRAM(CEEEV004) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKA) GROUP(CEE)
DEFINE PROGRAM(IGZXD24) GROUP(CEE)
DEFINE PROGRAM(IGZXDMR) GROUP(CEE)
DEFINE PROGRAM(IGZLLIBV) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKC) GROUP(CEE)
DEFINE PROGRAM(IGZXLPIO) GROUP(CEE)
DEFINE PROGRAM(IGZXAPI) GROUP(CEE)
DEFINE PROGRAM(IEWBNDD) GROUP(CEE)
DEFINE PROGRAM(IEWBIND) GROUP(CEE)
DEFINE PROGRAM(CDAEEDE) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKB) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKD) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKE) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKF) GROUP(CEE)
DEFINE PROGRAM(IGZXLPKG) GROUP(CEE)
DEFINE PROGRAM(IGZXPK2) GROUP(CEE)

DFHRPL setup differences with Enterprise COBOL V5
To run programs under CICS, consider the DFHRPL setup differences.

You must update the JCL that starts CICS. Include the hlq.SEQAMOD data set of
Debug Tool, and the Language Environment runtime libraries (SCEECICS,
SCEERUN, and if required by your applications, SCEERUN2) in the DFHRPL
concatenation.

If you are running Enterprise COBOL V5.1 (or later) programs compiled with the
TEST compiler option on CICS, you must also add system libraries MIGLIB and
SIEAMIGE in the DFHRPL DD concatenation. The DFHRPL concatenation is in the
CICS region startup JCL.

210 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|

|

|

|

|

|
|
|
|
|
|

Compiler options for programs that run under CICS
Table 36 lists the compiler options for Enterprise COBOL programs that run under
CICS.

Table 36. Compiler options for programs that run under CICS

Compiler options Comments

CICS The CICS compiler option enables the integrated CICS translator capability. The CICS option
must be specified if the source program contains CICS statements and has not been processed
by the separate CICS translator.

The CICS option requires that the NODYNAM and RENT options also are in effect. Enterprise
COBOL forces on these options if DYNAM, or NORENT are specified at the same level as the
CICS option.

The CICS translator option COBOL3 is recommended, although COBOL2 is still supported.

Choose the COBOL2 option if you are retranslating old programs that require the use of
temporary variables. In particular, note that the use of temporary variables might circumvent
errors that would normally occur when an argument value in a program is incorrectly defined.
The COBOL2 option provides declarations of temporary variables. Because of this feature,
incorrect definitions of argument values might be present, but not noticeable at run time, in
programs that were translated with COBOL2. Translating these programs with the COBOL3
option can reveal these errors for the first time.

For example, suppose you coded:

EXEC CICS LINK PROGRAM(’XXXXXXX’)
COMMAREA(WS-COMMAREA)
LENGTH(’1000’)

END-EXEC.

The length is supposed to be a binary halfword but because it is enclosed in quotation marks, it
is a character string. With COBOL3 the character string will be passed directly to CICS on the
CALL and will result in an error. With the COBOL2 option the length will be moved to an
intermediate variable and COBOL will convert it from character string to binary halfword as
part of the move. To assist with migration to the newer releases of CICS, you can use the
COBOL2 option to continue to circumvent errors in the programs, rather than correcting them.

If the NOCICS option is in effect, any CICS statements found will be flagged with S-level
diagnostics and discarded.

DBCS The DBCS option is the default for Enterprise COBOL. It might cause problems for CICS
programs if you are using the COBOL2 CICS translator option. The fix is to use the COBOL3
translator option.

NODYNAM NODYNAM is required for programs translated by the CICS translator because the CICS
command-level stub cannot be dynamically called.
Note: Dynamic calls are supported under CICS by the use of the CALL identifier format of the
call statement.

RENT RENT is required for CICS programs. RENT causes the compiler to produce reentrant code and
allows you to place the COBOL modules in the LPA (Link PackAarea) or ELPA (Extended Link
Pack Area) and thus shared among multiple address spaces under CICS. Also, the modules
cannot be overwritten, since the LPA and ELPA are read-only storage.

Chapter 18. CICS conversion considerations for COBOL source 211

Table 36. Compiler options for programs that run under CICS (continued)

Compiler options Comments

TRUNC Use TRUNC(OPT) for CICS programs that contain EXEC CICS commands, if the program uses
binary data items in a way that conforms to the PICTURE and USAGE clause for them.

Use TRUNC(BIN) if your program uses binary data items in a way that does not conform to the
PICTURE and USAGE clause for them. For example, if a data item is defined as PIC S9(8)
BINARY and might receive a value greater than eight digits, use TRUNC(BIN). You can also use
TRUNC(OPT) and redefine specific items as COMP-5 to improve runtime performance for the
whole program.

Migrating from the separate CICS translator to the integrated translator

The separate CICS translator has not been updated for newer COBOL language
such as floating comment delimiters and compiler directives. To use the latest
features of the COBOL compiler, use the integrated CICS translator.

When you migrate COBOL applications to use the integrated CICS translator:
v Delete the separate translation step from the compile process.
v Change the XOPTS translator option to the CICS compiler option. The

suboptions string must be delimited with quotes or apostrophes. For example, a
program to be translated by the separate CICS translator might have a CBL
statement like this:
CBL TEST(NOEJPD), XOPTS(LINKAGE,SEQ,SP)

For the integrated CICS translator it must be changed to this:
CBL TEST(NOEJPD), CICS(’LINKAGE,SEQ,SP’)

v Move all CBL/PROCESS statements to the first lines of the source program. The
integrated CICS translator does not accept comment lines preceding a
CBL/PROCESS statement. The source program must conform to Enterprise
COBOL rules.

v Check if you have nested programs that redefine DFHCOMMAREA. The
integrated translator will not generate declarations of DFHCOMMAREA or
DFHEIBLK in nested programs. DFHCOMMAREA and DFHEIBLK declarations
are generated in the outermost program with the GLOBAL attribute specified.
COBOL programs that depend on these generated declarations within nested
programs require source changes.

Integrated CICS translator
An integrated translator eliminates the separate translation step for COBOL
programs that contain CICS statements.

With the integrated translator, the COBOL compiler handles both native COBOL
and embedded CICS statements in the source program. When CICS statements are
encountered, the compiler interfaces with the integrated CICS translator. The
integrated CICS translator takes appropriate actions and then returns to the
compiler indicating what native language statements to generate.

Although the separate CICS translator is still supported in Enterprise COBOL, use
of the integrated CICS translator is recommended. The integrated CICS translator
improves usability and offers the highest level of functionality. The benefits of
using the integrated CICS translator include:

212 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|

v Enhancements in interactive debugging of COBOL applications with Debug Tool.
The application can be debugged at the original source level, instead of at the
level of the expanded source produced by the CICS translator.

v EXEC CICS or EXEC DLI statements can reside in copybooks, eliminating the
need to translate them with an external translator before compilation.

v There is no longer a need for an intermediate data set to hold the translated
version (before the program has been compiled) of the source program.

v There is only one output listing instead of two.
v Using nested programs that contain EXEC CICS statements is simplified.

DFHCOMMAREA and DFHEIBLK are generated in the outermost program with
the GLOBAL attribute specified on the PROCEDURE DIVISION USING of
nested programs.

v Nested programs that contain EXEC CICS statements can be held in separate
files and included through a COPY statement.

v REPLACE statements can now affect EXEC CICS statements.
v Binary fields in CICS control blocks are generated with USAGE COMP-5 instead

of BINARY. Thus, there is no longer a dependency on the setting of the TRUNC
compiler option. Any setting of the TRUNC option can be used with CICS
applications that use the integrated translator, subject only to the requirements
of the user-written logic within the application.

Note: The CICS documentation states that the EXCI translator option is not
supported for programs compiled with the integrated CICS translator, but CICS
has reversed this position. You can now compile with the EXCI translator option
and ignore the warning message DFH7006I.

Compiler options for the integrated CICS translator
Table 37 lists compiler options for Enterprise COBOL programs that use the
integrated CICS translator.

Table 37. Key compiler options for the integrated CICS translator

Compiler option Comments

CICS The CICS compiler option enables the integrated CICS translator capability. The CICS option
must be specified if the source program contains CICS statements and has not been
processed by the integrated CICS translator.

The CICS option requires that the NODYNAM, and RENT options also are in effect.
Enterprise COBOL forces on these options if DYNAM or NORENT are specified at the same
level as the CICS option.

If NOCICS option is specified, any CICS statements found in the source program will
receive S-level messages and be discarded.

NODYNAM NODYNAM is required for programs translated by the CICS translator because the CICS
command-level stub cannot be dynamically called.

RENT RENT is required for CICS programs. RENT causes the compiler to produce reentrant code
and allows you to place the COBOL modules in the LPA or ELPA and thus shared among
multiple address spaces under CICS. Also, the modules cannot be overwritten, since the LPA
and ELPA are read-only storage.

Chapter 18. CICS conversion considerations for COBOL source 213

Static calls from COBOL V5 programs to VS COBOL II programs under
CICS

Existing applications with VS COBOL II programs are probably linked with older
versions of the pre-Enterprise COBOL library. When a module contains COBOL V5
programs statically linked with VS COBOL II programs, and if the module is to be
run under CICS, the application must be relinked with REPLACE IGZEBST using
LE library modules from SCEELKED that have been updated by the PTFs for
APAR PI33330.

214 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|

|
|
|
|
|
|

Chapter 19. DB2 coprocessor conversion considerations

When you upgrade programs that use the DB2 precompiler to instead use the DB2
coprocessor, you need to be aware of differences in language elements and in
code-page conversions.

Consider the following topics:
v DB2 coprocessor integration
v Language elements
v Code-page conversion

Starting with DB2 Version 8 you can no longer use the DB2 precompiler for OS/VS
COBOL programs. In addition, you cannot mix OS/VS COBOL with Enterprise
COBOL. Therefore, if a program needs to be changed, it must be upgraded to
Enterprise COBOL.

DB2 coprocessor integration
The coprocessor eliminates the need for precompilation with the DB2 precompiler
in COBOL programs containing SQL statements.

The coprocessor uses the COBOL compiler to handle both native COBOL and
imbedded SQL statements in the source program. When the SQL statements are
encountered, the compiler interfaces with the DB2 coprocessor. The DB2
coprocessor takes appropriate actions and then returns to the compiler typically
indicating what native language statements to generate.

The separate precompiler is still supported by DB2 and Enterprise COBOL,
however the coprocessor approach is the preferred and recommended solution. The
coprocessor approach provides improved usability and the highest level of
functionality. In particular, interactive debugging of COBOL applications with
Debug Tool is enhanced when the coprocessor solution is used, since the
application may be debugged at the original source level, instead of at the level of
the expanded source produced by the DB2 precompiler.

The benefits of a coprocessor approach include:
v Compilation of COBOL programs with a single JOB step even if the source

contains EXEC SQL (and EXEC CICS) statements.
v The ability to include source code that contains EXEC SQL statements using

COPY statements is available.
v Enhancements in interactive debugging of COBOL applications with Debug Tool.

The application may be debugged at the original source level, instead of at the
level of the expanded source produced by the separate DB2 precompiler.

v There is only one output listing instead of two.
v REPLACE statements can now affect EXEC SQL statements.
v Nested programs that contain EXEC SQL statements can be held in separate files

and included through a COPY statement.

The following job stream shows an example of using the DB2 precompiler:

© Copyright IBM Corp. 1991, 2019 215

//DB2PRE JOB ...,
// NOTIFY=GTAO,MSGCLASS=A,CLASS=A,TIME=(1,0),
// REGION=200M,MSGLEVEL=(1,1)
//PC EXEC PGM=DSNHPC,
// PARM=’HOST(COB2),QUOTE,APOSTSQL,SOURCE,XREF’
//DBRMLIB DD DSN=GTAO.DBRMLIB.DATA(COBTEST),DISP=SHR
//STEPLIB DD DSN=DSN910.SDSNLOAD,DISP=SHR
//SYSCIN DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(500,500))
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT2 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSIN DD *

IDENTIFICATION DIVISION.
PROGRAM-ID.COBTEST.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RES PIC X(10).
EXEC SQL
INCLUDE SQLCA

END-EXEC.
PROCEDURE DIVISION.
EXEC SQL
SELECT COL1 INTO :RES FROM TABLE1

END-EXEC.
GOBACK.

//COB EXEC PGM=IGYCRCTL,
//PARM=(NODYNAM,’BUF(12288)’,SOURCE,NOXREF)
//STEPLIB DD DSN=IGY.V5R1M0.SIGYCOMP,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=CEE.SCEERUN2,DISP=SHR
//SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
//SPACE=(800,(500,500))
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT2 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT3 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT4 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT5 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT6 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT7 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT8 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT9 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT10 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT11 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT12 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT13 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT14 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT15 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSMDECK DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)

The following example shows the integrated SQL coprocessor:
//DB2INT JOB (GTAO,F342,090,M49),’Gianni Tao’,
//NOTIFY=GTAO,MSGCLASS=A,CLASS=A,TIME=(1,0),
//REGION=200M,MSGLEVEL=(1,1)
//COB EXEC PGM=IGYCRCTL,
//PARM=(NODYNAM,’BUF(12288)’,SOURCE,NOXREF,SQL)
//STEPLIB DD DSN=IGY.V5R1M0.SIGYCOMP,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR

216 Enterprise COBOL for z/OS, V5.2 Migration Guide

// DD DSN=CEE.SCEERUN2,DISP=SHR
// DD DSN=DSN910.SDSNLOAD,DISP=SHR
//DBRMLIB DD DSN=GTAO.DBRMLIB.DATA(COBTEST),DISP=SHR
//SYSIN DD *

IDENTIFICATION DIVISION.
PROGRAM-ID.COBTEST.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RES PIC X(10).
EXEC SQL

INCLUDE SQLCA
END-EXEC.
PROCEDURE DIVISION.
EXEC SQL

SELECT COL1 INTO :RES FROM TABLE1
END-EXEC.
GOBACK.

//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
//SPACE=(800,(500,500))
//SYSPRINT DD SYSOUT=* //SYSUDUMP DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT2 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT3 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT4 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT5 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT6 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT7 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT8 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT9 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT10 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT11 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT12 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT13 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT14 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT15 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSMDECK DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)

Language elements
There are some differences in the way certain aspects of SQL code are handled
between the separate precompiler and the integrated coprocessor. View the
following items to take into account these differences when you change to using
the coprocessor.

Continuation lines
Precompiler: Requires that an EXEC SQL statement start in columns 12
through 72; continuation lines of the statement can start anywhere in
columns 8 through 72.

Coprocessor: Requires that all lines of an EXEC SQL statement be coded in
columns 12 through 72, including continuation lines.

Action to migrate to coprocessor: Move any continuation of EXEC SQL
statements that start in columns 8 through 11 over to start in columns 12
through 72.

COPY REPLACING with SQL INCLUDE
Precompiler: An EXEC SQL INCLUDE statement can reference a copybook
that contains a nested COPY . . . REPLACING statement.

Coprocessor: An EXEC SQL INCLUDE statement cannot reference a
copybook that contains a nested COPY . . . REPLACING statement,

Chapter 19. DB2 coprocessor conversion considerations 217

because EXEC SQL INCLUDE is processed identically to COPY with the
coprocessor, and nested COPY statements cannot use REPLACING. You
might also consider using REPLACE instead of COPY REPLACING. With
the integrated coprocessor, REPLACE will take effect even on copybooks.
This was not the case with the separate precompiler.

Action to migrate to coprocessor: Change your code so that COPY
REPLACING is only in the original COBOL source program, not in a
copybook.

FOR BIT DATA host variables
Precompiler: A COBOL alphanumeric data item can be used as a host
variable to hold DB2 character data that has subtype FOR BIT DATA. An
explicit EXEC SQL DECLARE VARIABLE statement that declares the host
variable in question as FOR BIT DATA is not required with the
precompiler.

Coprocessor: A COBOL alphanumeric data item can be used as a host
variable to hold DB2 character data having subtype FOR BIT DATA only if:
v You specify the NOSQLCCSID compiler option, or
v An explicit EXEC SQL DECLARE VARIABLE statement for the host

variable is specified in the COBOL program. For example:
EXEC SQL DECLARE :HV1 VARIABLE FOR BIT DATA END-EXEC

If you use the DB2 DCLGEN command to generate COBOL declarations
for a table, you can create the EXEC SQL DECLARE statements
automatically. To do so, specify the DCLBIT(YES) option of the DCLGEN
command.

Action to migrate to coprocessor:

v Use DCLGEN to add the explicit EXEC SQL DECLARE VARIABLE FOR
BIT DATA statement to the data declarations for any data items that are
used as bit data and not just as character data.

v Add the explicit EXEC SQL DECLARE VARIABLE FOR BIT DATA
statement to the data declarations manually.

v Use the NOSQLCCSID compiler option.

Multiple definitions of a host variable
Precompiler: Does not require host variable references to be unique.

The first definition that maps to a valid DB2 data type is used.

Coprocessor: Requires that all host variables references be unique.

If a host variable reference is not unique, the coprocessor diagnoses it as a
nonunique reference. You must fully qualify the host variable reference to
make it unique.

Action to migrate to coprocessor: Fully qualify any host variable
references for which there are multiple definitions.

Period at the end of an EXEC SQL INCLUDE statement
Precompiler: A period is not required.

If you do specify a period, the precompiler processes it as part of the
statement. If you do not specify a period, the precompiler accepts the
statement as if a period were specified.

Coprocessor: A period is required. (The coprocessor treats the EXEC SQL
INCLUDE statement like a COPY statement.)

Example:

218 Enterprise COBOL for z/OS, V5.2 Migration Guide

IF A = B THEN
EXEC SQL INCLUDE somecode END-EXEC.

ELSE
...

END-IF

Note that the period does not terminate the IF statement.

Action to migrate to coprocessor: Add a period after every
EXEC SQL INCLUDE somecode END-EXEC

statement.

REPLACE and EXEC SQL statements
Precompiler: COBOL REPLACE statements and the REPLACING phrase of
COPY statements act on the expanded source created from EXEC SQL
statements.

Coprocessor: COBOL REPLACE statements and the REPLACING phrase of
COPY statements act on the original source program including EXEC
statements, which can result in different behavior in the following
examples:
REPLACE ==ABC ==By ==XYZ ==.
01 G.
02 ABC PIC X(10).
...
EXEC SQL SELECT *INTO :G.ABC FROM TABLE1 END-EXEC

With the precompiler the reference to G.ABC will be displayed as ABC OF
G in the expanded source and will be replaced with XYZ OF G. With the
coprocessor, replacement will not occur because ABC is not delimited by
separators in the original source string G.ABC.

Action to migrate to coprocessor: Change your code to either REPLACE
the qualified references (for example G.ABC) as well as the unqualified
references:
REPLACE ==ABC ==By ==XYZ ==
==G.ABC ==By ==G.XYZ ==.

Or change code so that qualification is not required, stop using REPLACE
for such data items, or any other means to allow the COBOL programs
changed by REPLACE to compile cleanly.

Source code that follows END-EXEC
Precompiler: Ignores any code that follows the END-EXEC on the same
line.

Coprocessor: Processes the code that follows the END-EXEC on the same
line.

Action to migrate to coprocessor: add the floating comment indicator *>
after the END-EXEC phrase.

SQL-INIT-FLAG
Precompiler: If you pass host variables that might be located at different
addresses when the program is called more than once, the called program
must reset SQL-INIT-FLAG. Resetting this flag indicates to DB2 that
storage must be initialized when the next SQL statement runs. To reset the
flag, insert the statement MOVE ZERO TO SQL-INIT-FLAG in the PROCEDURE
DIVISION of the called program, ahead of any executable SQL statements
that use the host variables.

Chapter 19. DB2 coprocessor conversion considerations 219

Coprocessor: The called program does not need to reset SQL-INIT-FLAG.
An SQL-INIT-FLAG is automatically defined in the program to aid in
program portability. However, statements that modify SQL-INIT-FLAG,
such as MOVE ZERO TO SQL-INIT-FLAG, have no effect on the SQL processing
in the program.

Action to migrate to coprocessor: Optionally remove references to
SQL-INIT-FLAG, they are not used and not needed.

Code-page conversion
There are differences in the way character conversion is handled between the
separate precompiler and the integrated coprocessor. View the following items to
take into account these differences when you change to using the coprocessor.

Code-page coordination between COBOL and DB2 for SQL statements
Precompiler: There is no coordination. The code page for processing SQL
statements is determined from DB2 external mechanisms and defaults

Coprocessor: Code-page coordination between COBOL and DB2 for SQL
statements is dependant on the SQLCCSID compile option:
v SQLCCSID:

– The COBOL CODEPAGE(ccsid) compiler option affects processing of
host variables in COBOL statements and SQL statements.

– CCSID processing is compatible with the SQL coprocessor in
Enterprise COBOL V3R4.

v NOSQLCCSID:
– The CODEPAGE(ccsid) compiler option only affects processing of

COBOL statements, it is not used for processing SQL statements.
– The code page for processing SQL statements is determined from DB2

external mechanisms and defaults.

For more information SQLCCSID and NOSQLCCSID, see the Enterprise
COBOL for z/OS Programming Guide section "COBOL and DB2 CCSID
determination".

220 Enterprise COBOL for z/OS, V5.2 Migration Guide

Chapter 20. Moving IMS programs to Enterprise COBOL V5

If you use COBOL for IMS exit routines, pay attention to some restrictions with
COBOL V5.

Only IMS exits that are enabled for enhanced services can reside in PDSE data sets.
In particular, COBOL users commonly use two types of exits, and they are not
enabled to run out of PDSE data sets:
DFSME127 The Input Message Segment Edit user exit
DFSME000 The Input Message Field Edit user exit

If you have COBOL programs that are used as these types of IMS user exits, the
programs cannot be compiled with COBOL V5. The exception is when the actual
exit is an assembler program in a PDS data set that LOADs and calls a COBOL V5
program in a PDSE. To handle the cases with COBOL V5 and these users exits,
you have the following choices:
v If the exit routine is COBOL, do not recompile with COBOL V5, but keep using

the older COBOL version.
v If the exit routine is COBOL, change to use an assembler program that LOADs

COBOL V5, or an older COBOL program that does a dynamic CALL to COBOL
V5 for exit logic.

v If the exit routine is assembler that loads a COBOL program, recompile the
COBOL program with COBOL V5, bind into a PDSE data set, and add that new
data set to the concatenation.

IMS is in the process of enabling user exits for enhanced services, which allows
them to be run out of PDSE data sets. See the list of the user exit types that are
enabled for the new services in IMS V11:
ICQSEVNT(new) The IMS CQS Event user exit
ICQSSEVT(new) The IMS CQS Structure Event user exit
INITTERM(new) The Initialization / Termination user exit
RESTART(new in IMS 10)The Restart user exit
PPUE (DSFSPPUE0) The Partner Product user exit

No additional exits were enabled in IMS 12.

The following user exit types are enabled in IMS 13:
BSEX (DFSBSEX0) The Build Security Environment user exit
LOGEDIT (DFSFLGE0) The Log Edit user exit
LOGWRT (DFSFLGX0) The Logger user exit
NDMX (DFSNDMX0) The Non-Discardable Message user exit
OTMAIOED (DFSYIOE0) The OTMA Input / Output Exit user exit
OTMARTUX (DFSYRTUX) The OTMA Resume TPIPE Security user exit
OTMAYPRX (DFSYPRX0) The OTMA Destination Resolution user exit
RASE (DFSRAS00) The Resource Access Security user exit

Compiling and linking for running under IMS
For best performance in the IMS environment, use the RENT compiler option. It
causes COBOL to generate reentrant code. You can then run your application
programs in either preloaded mode (the programs are always in storage) or
nonpreload mode, without having to recompile with different options.

© Copyright IBM Corp. 1991, 2019 221

IMS allows COBOL programs to be preloaded. This preloading can boost
performance because subsequent requests for the program can be handled faster
when the program is already in storage (rather than being fetched from a library
each time it is needed).

You must use the RENT compiler option to compile a program that is to be run
preloaded or as both preloaded and nonpreloaded. When you preload a program
object that contains COBOL programs, all of the COBOL programs in that program
object must be compiled with the RENT option.

In an application with any mixture of Enterprise COBOL, IBM COBOL, and VS
COBOL II programs, the following compiler options are recommended:

Table 38. Recommended compiler options for applications with mixed COBOL programs

Enterprise COBOL IBM COBOL VS COBOL II

RENT RENT RENT and RES

You can place programs compiled with the RENT option in the LPA or ELPA.
There they can be shared among the IMS dependent regions.

To run above the 16-MB line, your application program must be compiled with
RENT and RMODE(ANY).

With IMS, the data for IMS application programs can reside above the 16-MB line,
and you can use DATA(31) and RENT for programs that use IMS services.

The recommended link-edit attributes for proper execution of COBOL programs
under IMS are as follows:
v Link as RENT program objects that contain only COBOL programs compiled

with the RENT compiler option.
v To link program objects that contain a mixture of COBOL RENT programs and

other programs, use the link-edit attributes recommended for the other
programs.

LLA-managed load libraries for performance
If you use Library Lookaside (LLA) to manage caching of COBOL load modules
(PDS load libraries) and program objects (PDSE load libraries) for performance,
COBOL V5 modules are not cached by LLA because of the structure of their
resulting program objects. IBM might remove this restriction. In the meantime, you
can get a performance boost by enabling PDSE hyperspace caching, which helps
the case of COBOL V5 program objects in load libraries that are managed by LLA.

One approach for loading large program objects is called page-fault driven loading.
The initial load brings in only part of the program object; other parts of the
program object might be brought in only when they are referenced, that is, when a
page-fault occurs. For libraries that are managed by LLA, in some cases
performance can be improved by avoiding page-fault driven loading. If you use
the binder option FETCHOPT=(NOPACK,PRIME) for a program object, the system does
not use page-fault driven loading. The default binder option of
FETCHOPT=(NOPACK,NOPRIME) allows use of page-fault driven loading.

Note: When a program object resides in a library that is not LLA managed, the
default binder option of FETCHOPT=(NOPACK,NOPRIME) might provide better

222 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

performance.

Chapter 20. Moving IMS programs to Enterprise COBOL V5 223

|

224 Enterprise COBOL for z/OS, V5.2 Migration Guide

Part 6. Appendixes

© Copyright IBM Corp. 1991, 2019 225

226 Enterprise COBOL for z/OS, V5.2 Migration Guide

Appendix A. Commonly asked questions and answers

This section provides answers to some of the most common questions about
upgrading to Enterprise COBOL and Language Environment. The questions are
grouped into the following categories:
v Compatibility
v Link-editing with Language Environment
v Compiling with Enterprise COBOL
v Language Environment services
v Language Environment runtime options
v Subsystems
v z/OS
v Performance
v Service
v Object-oriented syntax, and Java 6, Java 7 and Java 8 SDKs

Compatibility
Can OS/VS COBOL and VS COBOL II programs call Enterprise COBOL
programs?

On non-CICS, calls between OS/VS COBOL and Enterprise COBOL are not
supported. On CICS, OS/VS COBOL programs cannot run at all.

On non-CICS, calls between VS COBOL II NORES programs (that is, programs
compiled with the NORES compiler option) and Enterprise COBOL are not
supported. On CICS, VS COBOL II NORES programs cannot run at all.

On non-CICS calls and on CICS, any calls between VS COBOL II RES programs
and Enterprise COBOL programs are supported. For additional details, see the
Enterprise COBOL Programming Guide.

For a complete list of calls between COBOL and assembler (including whether they
are supported or not when running with Language Environment), see “Runtime
support for assembler COBOL calls under CICS” on page 259.

Can you convert programs selectively to Enterprise COBOL?

Yes, unless an application contains any OS/VS COBOL programs. When you
convert applications containing OS/VS COBOL programs, you must convert all of
the OS/VS COBOL programs in the run unit to Enterprise COBOL.

We have had errors when running COBOL programs where an output DD was
misspelled and a temporary file was created. This causes problems when it
occurs with a large file for a one-time program run. Is this still a concern with
Enterprise COBOL?

No, for QSAM you can turn off automatic file creation with the Language
Environment CBLQDA(OFF) runtime option.

© Copyright IBM Corp. 1991, 2019 227

|

When should you use the CMPR2 option?

The CMPR2/NOCMPR2 option is not available in Enterprise COBOL. Enterprise
COBOL behaves as if NOCMPR2 were in effect at all times. Any programs that
were compiled with CMPR2 with a previous compiler must be upgraded to the 85
COBOL standard to compile with Enterprise COBOL.

For more details, see “Migrating from the CMPR2 compiler option to NOCMPR2”
on page 107.

Is the signature area of Enterprise COBOL programs the same as for OS/VS
COBOL and VS COBOL II?

No, but a map of the signature area is in the Enterprise COBOL Programming Guide
and can be used to find out what compiler options were used to compile the
module, when it was compiled, release level, and so on.

Compiling with Enterprise COBOL
Can you compile programs written for OS/VS COBOL with Enterprise COBOL
using the CMPR2 option?

No, CMPR2 is not available with Enterprise COBOL.

For additional details, see “Upgrading your source to Enterprise COBOL” on page
15.

Can you compile programs written for VS COBOL II with Enterprise COBOL?

Yes. For additional details, see “Upgrading your source to Enterprise COBOL” on
page 15.

What utilities or tools can assist in converting OS/VS COBOL or VS COBOL II
source to Enterprise COBOL source?

The following conversion tools, which you can order through IBM, can assist in
converting OS/VS COBOL and VS COBOL II source to Enterprise COBOL source:
1. The COBOL conversion aid (CCCA), which is included with the IBM Debug

Tool product, assists in converting OS/VS COBOL and VS COBOL II source to
Enterprise COBOL source.

2. The COBOL Report Writer Precompiler 5798-DYR assists in converting OS/VS
COBOL Report Writer code, or allows you to continue using it with Enterprise
COBOL.

3. The Debug Tool Load Module Analyzer can determine the language translator
for each object in your program objects. The Debug Tool Load Module
Analyzer is included with the IBM Debug Tool product.

4. The free and open source COBOL Analyzer can provide assistance in taking an
inventory of your existing program objects by reporting the compiler, compiler
release, and compiler options used.
Download the free COBOL Analyzer from http://cbttape.org/cbtdowns.htm. It
is named as File # 321 COBOL Analyzer from Roland Schiradin & post processor on
that web page.

228 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|

|
|
|

|
|
|

http://cbttape.org/cbtdowns.htm

5. Rational Asset Analyzer for System z, product number 5655-W57, assists in
taking an inventory and analyzing the impact that code changes make upon
your enterprise assets.

Does Enterprise COBOL meet the 85 COBOL Standard?

Yes, Enterprise COBOL supports all required modules of the 85 COBOL Standard
at the highest level defined by the Standard.

Does Enterprise COBOL meet the 2002 COBOL Standard?

Enterprise COBOL supports many parts of the 2002 COBOL Standard.

Binding (link-editing) Enterprise COBOL programs
What is the difference between an object module, a load module, and a program
object?

An object module is the output of the compiler and input to the binder. A load
module is a non-GOFF executable that is output from the binder with an
Enterprise COBOL V4 or earlier object module. A program object is a new style
GOFF executable that is the output from the binder when binding an object
module from Enterprise COBOL V5.1, or the output from the binder anytime the
target data set (SYSLMOD) is a PDSE.

Are PDS and PDSE data sets allowed for object modules with Enterprise
COBOL V5?

Compiler output data sets can be PDS or PDSE, including the object module. The
output of the bind step must be a PDSE. When COBOL object modules are bound
(link-edited), they become program objects and must be stored in PDSE data sets.

Language Environment services
What is COBOL multithreading and how does it relate to PL/I multitasking?

COBOL multithreading is the support of multiple programs running at the same
time in the same address space in the same process. It can be initiated by COBOL
programs calling pthread_create or C programs doing "pthread create". It is
compatible with PL/I multitasking in that multiple PL/I tasks can call COBOL
programs when they are compiled with the THREAD compiler option.

PL/I can initiate multitasking using native language and manage the interaction
between the separate tasks.

Note: COBOL mutlithreading is not related to the CICS concept of 'threadsafe'.

Language Environment runtime options
Does Enterprise COBOL V5.1.1 use HEAP for WORKING-STORAGE?

It uses HEAP for WORKING-STORAGE when the COBOL program is compiled
with the RENT option and is in one of the following cases:
v Compiled with the DATA(24) compiler option
v Running in CICS

Appendix A. Commonly asked questions and answers 229

|
|
|

|

|
|
|
|
|
|

v A COBOL V5.1.1 in a program object that contains only COBOL programs
(V5.1.1, V4.2 or earlier) and assembly programs. There are no Language
Environment interlanguage calls within the program object and no COBOL
V5.1.0 programs.

v A COBOL V5 program in a program object where the main entry point is
COBOL V5. In this case, the program object can contain Language Environment
interlanguage calls, with COBOL statically linking with C, C++ or PL/I. All
COBOL V5 programs within such program objects (even if they are not the main
entry point) have their WORKING-STORAGE allocated from heap storage.

Will lower HEAP storage values for COBOL performance affect the performance
of C or C++ programs?

Yes. If the C programs use a lot of MALLOC statements, then C performance will
be worse with lower HEAP storage values.

Will lower HEAP storage values for COBOL performance affect PL/I
performance?

In general, the answer is no. However, performance might be slower for
applications that have a high use of ALLOCATE and FREE. In this case, tune the
HEAP values to improve performance. Also, if the application has many automatic
variables, the STACK values should also be tuned to improve performance.

Does Enterprise COBOL use STACK storage?

Enterprise COBOL programs use STACK storage for LOCAL-STORAGE data items.
Other COBOL programs do not use STACK storage.

COBOL runtime routines do use STACK storage.

What do HEAP(KEEP) or LIBSTACK(KEEP) do? Does the KEEP suboption keep
all of the HEAP or LIBSTACK storage or just the increments of extra storage that
were obtained?

The KEEP suboption causes Language Environment to keep all of the storage
obtained, including the initial and incremental amounts.

How does ERRCOUNT relate to abends? Does ERRCOUNT only count
HANDLED conditions?

ERRCOUNT is a count of errors, conditions, abends, and exceptions that are
allowed before Language Environment abends with its own abend code. If an error
is not HANDLED, the application will terminate so ERRCOUNT will have no
effect.

Subsystems
When running in a CICS region, does EXEC DLI "translate" into interfacing with
CEETDLI or CBLTDLI?

EXEC DLI does not "translate" into interfacing with either CEETDLI or CBLIDLI.
The CICS translator generates a call to DFHELI. The call to DFHELI must be a
static call. (The NODYNAM compiler option is required for programs translated by
the CICS translator.)

230 Enterprise COBOL for z/OS, V5.2 Migration Guide

Is CALL 'CEETDLI' supported in a CICS program? What about CALL 'CBLTDLI'
in a CICS program running under Language Environment?

CEETDLI is not supported under a CICS environment. (CICS does not supply a
CEETDLI entry point in DFHDLIAL.) CBLTDLI is supported under a CICS
environment (CICS does supply a CBLTDLI entry point in DFHDLIAL) under
Language Environment.

If you have a batch or IMS DC application that has explicit calls to other
Language Environment services, or user-coded Language Environment condition
handlers, must all IMS interfaces use CEETDLI instead of CBLTDLI?

No, all calls within a program or run unit are not required to be CEETDLI. The
exception is if you have any current application using the AIBTDLI interface.
AIBTDLI should be changed to CEETDLI as it improves ESTAE processing and
does not require a logic change, only a change to the call from AIBTDLI to
CEETDLI.

Will Language Environment (and its support of mixed COBOL and PL/I
programs) still support applications with PL/I and VS COBOL II (or IBM
COBOL) where the COBOL programs use CBLTDLI, or must such programs be
converted to CEETDLI?

There is no problem with a mixed environment from an IMS standpoint and the
programs do not need to be modified. Consider CBLTDLI and CEETDLI equivalent
for conversion purposes.

Under Language Environment, your COBOL programs can still use the CBLTDLI
interface. Remember that the programs must be VS COBOL II or Enterprise
COBOL because mixed OS/VS COBOL and PL/I is not allowed under Language
Environment. Either CBLTDLI or CEETDLI can be used, except that CEETDLI is
not supported under a CICS environment.

Under CICS, mixed VS COBOL II and PL/I is not allowed.

Do I need to specify the TRAP(OFF) runtime option when using the CBLTDLI
interface under IMS?

No, TRAP(OFF) is not supported for COBOL programs. There are some instances
when you cannot use Language Environment condition handling when using
CBLTDLI under IMS. However, if you specify ABTERMENC(ABEND), database
rollback will be performed automatically for severe-error conditions. For details,
see the Language Environment Programming Guide.

z/OS
Does COBOL run in 64-bit z/OS?

Yes. Though COBOL does not yet support 64-bit addressing in COBOL programs,
you will get some of the benefits of 64-bit z/OS just by moving to it. With a 64-bit
addressable real memory backing your virtual memory, there will be less paging
and swapping and therefore better system performance, and you don't have to
change your programs at all! In addition, DB2 can exploit 64-bit addressing for
SQL statements in COBOL programs without any changes to the COBOL
programs.

Appendix A. Commonly asked questions and answers 231

Even when your z/OS system is running in 64-bit mode, you can still run existing
AMODE 24 and AMODE 31 applications without having to relink or recompile
them. You can get improved system performance without any changes to your
applications.

Performance
Is there a CPU savings when one converts from OS/VS COBOL to Enterprise
COBOL?

Yes. Enterprise COBOL V5 can give you a significant performance improvement
when compared to all older COBOL compilers. It is especially true for programs
with a lot of arithmetic.

Service
Do I need to recompile all of my programs to get IBM service support for my
applications?

If your programs are running with a supported run time, you do not need to
recompile your programs to continue to have IBM service support. For additional
details, see “Service support for OS/VS COBOL and VS COBOL II programs” on
page 20.

Object-oriented syntax, and Java 6, Java 7 and Java 8 SDKs
How do I run existing COBOL applications with Java 6, Java 7 and Java 8?

Earlier versions of Enterprise COBOL applications that use object-oriented syntax
for Java interoperability were supported with Java SDK 1.4.2 and Java 5.

To run these applications with Java 6, Java 7, or Java 8, do these steps:
1. Recompile and relink the applications using Enterprise COBOL V5.2.
2. Recompile the generated Java class that is associated with each object-oriented

COBOL class using the javac command from Java 6, Java 7, or Java 8.

232 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|

|

|

|

|

Appendix B. COBOL reserved word comparison

The following table shows differences in reserved words between OS/VS COBOL,
VS COBOL II, IBM COBOL, and Enterprise COBOL.

Information about source language comparison can be found in:
v Chapter 5, “Upgrading OS/VS COBOL source programs,” on page 45
v Chapter 7, “Upgrading VS COBOL II source programs,” on page 91
v Chapter 9, “Upgrading IBM COBOL source programs,” on page 101
v Chapter 11, “Upgrading programs from Enterprise COBOL Version 3,” on page

147
v Chapter 13, “Upgrading from Enterprise COBOL Version 4,” on page 161

Bold text indicates new reserved words (excluding new words reserved for future
development) that have been added since IBM COBOL.

Key:

X The word is reserved in the product.

X* Within the IBM COBOL column, the word is reserved in COBOL for
OS/390 & VM, Version 2 Release 2 and later only. It is not reserved in
Version 2 Release 1 or earlier.

X** Within the Enterprise COBOL column, the word is reserved in Enterprise
COBOL Version 4 Release 1 and later only. It is not reserved in Enterprise
COBOL Version 3 or earlier.

X*** Within the Enterprise COBOL column, the word is reserved in Enterprise
COBOL Version 4 Release 2 and later. It is not reserved in Enterprise
COBOL Version 4 Release 1 or earlier.

X**** Within the Enterprise COBOL column, the word is reserved in Enterprise
COBOL Version 5 Release 1. It is not reserved in Enterprise COBOL
Version 4 Release 2 or earlier.

X***** Within the Enterprise COBOL column, the word is reserved in Enterprise
COBOL Version 5 Release 2. It is not reserved in Enterprise COBOL
Version 5 Release 1 or earlier.

- The word is not reserved in the product. (This includes obsolete reserved
words that are no longer flagged.)

CDW The word is an Enterprise COBOL compiler directing statement. If used as
a user-defined word, it is flagged with a severe message.

RFD The word is reserved for future development. If used, it is flagged with an
informational message.

UNS The word is a 85 COBOL Standard reserved word for a feature not
supported by this compiler. For some of these words, the feature is
supported by the Report Writer Precompiler. If used in a program, it is
recognized as a reserved word and flagged with a severe message.

© Copyright IBM Corp. 1991, 2019 233

||
|
|

Table 39. Reserved word comparison

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

ACCEPT X X X X

ACCESS X X X X

ACTIVE-CLASS RFD - - -

ACTUAL - - - X

ADD X X X X

ADDRESS X X X X

ADVANCING X X X X

AFTER X X X X

ALIGNED RFD - - -

ALL X X X X

ALLOCATE RFD - - -

ALPHABET X X X -

ALPHABETIC X X X X

ALPHABETIC-LOWER X X X -

ALPHABETIC-UPPER X X X -

ALPHANUMERIC X X X -

ALPHANUMERIC-EDITED X X X -

ALSO X X X X

ALTER X X X X

ALTERNATE X X X X

AND X X X X

ANY X X X -

ANYCASE RFD - - -

APPLY X X X X

ARE X X X X

AREA X X X X

AREAS X X X X

ASCENDING X X X X

ASSIGN X X X X

AT X X X X

AUTHOR X X X X

AUTOMATIC RFD - - -

B-AND RFD RFD RFD -

B-NOT RFD RFD RFD -

B-OR RFD RFD RFD -

B-XOR RFD - - -

BASED RFD - - -

BASIS CDW CDW CDW X

BEFORE X X X X

234 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

BEGINNING X X X X

BINARY X X X -

BINARY-CHAR RFD - - -

BINARY-DOUBLE RFD - - -

BINARY-LONG RFD - - -

BINARY-SHORT RFD - - -

BIT RFD RFD RFD -

BLANK X X X X

BLOCK X X X X

BOOLEAN RFD RFD RFD -

BOTTOM X X X X

BY X X X X

CALL X X X X

CANCEL X X X X

CBL CDW CDW CDW X

CD UNS UNS UNS X

CF UNS UNS UNS X

CH UNS UNS UNS X

CHANGED - - - X

CHARACTER X X X X

CHARACTERS X X X X

CLASS X X X -

CLASS-ID X X - -

CLOCK-UNITS UNS UNS UNS -

CLOSE X X X X

COBOL X X X -

CODE X X X X

CODE-SET X X X X

COL RFD - - -

COLLATING X X X X

COLS RFD - - -

COLUMN UNS UNS UNS X

COLUMNS RFD - - -

COM-REG X X X -

COMMA X X X X

COMMON X X X -

COMMUNICATION UNS UNS UNS X

COMP X X X X

COMP-1 X X X X

Appendix B. COBOL reserved word comparison 235

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

COMP-2 X X X X

COMP-3 X X X X

COMP-4 X X X X

COMP-5 X X* RFD -

COMPUTATIONAL X X X X

COMPUTATIONAL-1 X X X X

COMPUTATIONAL-2 X X X X

COMPUTATIONAL-3 X X X X

COMPUTATIONAL-4 X X X X

COMPUTATIONAL-5 X X* RFD

COMPUTE X X X X

CONDITION RFD - - -

CONFIGURATION X X X X

CONSOLE - - - X

CONSTANT RFD - - -

CONTAINS X X X X

CONTENT X X X -

CONTINUE X X X -

CONTROL UNS UNS UNS X

CONTROLS UNS UNS UNS X

CONVERTING X X X -

COPY CDW CDW CDW X

CORR X X X X

CORRESPONDING X X X X

COUNT X X X X

CRT RFD - - -

CSP - - - X

CURRENCY X X X X

CURRENT-DATE - - - X

CURSOR RFD - - -

C01 - - - X

C02 - - - X

C03 - - - X

C04 - - - X

C05 - - - X

C06 - - - X

C07 - - - X

C08 - - - X

C09 - - - X

236 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

C10 - - - X

C11 - - - X

C12 - - - X

DATA X X X X

DATA-POINTER RFD - - -

DATE X X X X

DATE-COMPILED X X X X

DATE-WRITTEN X X X X

DAY X X X X

DAY-OF-WEEK X X X -

DBCS X X X -

DE UNS UNS UNS X

DEBUG - - - X

DEBUG-CONTENTS X X X X

DEBUG-ITEM X X X X

DEBUG-LINE X X X X

DEBUG-NAME X X X X

DEBUG-SUB-1 X X X X

DEBUG-SUB-2 X X X X

DEBUG-SUB-3 X X X X

DEBUGGING X X X X

DECIMAL-POINT X X X X

DECLARATIVES X X X X

DEFAULT RFD RFD RFD -

DELETE X X X X

DELIMITED X X X X

DELIMITER X X X X

DEPENDING X X X X

DESCENDING X X X X

DESTINATION UNS UNS UNS X

DETAIL UNS UNS UNS X

DISABLE UNS UNS UNS X

DISP - - - X

DISPLAY X X X X

DISPLAY-ST - - - X

DISPLAY-1 X X X -

DIVIDE X X X X

DIVISION X X X X

DOWN X X X X

Appendix B. COBOL reserved word comparison 237

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

DUPLICATES X X X X

DYNAMIC X X X X

EC RFD - - -

EGCS X X X -

EGI UNS UNS UNS X

EJECT CDW CDW CDW X

ELSE X X X X

EMI UNS UNS UNS X

ENABLE UNS UNS UNS X

END X X X X

END-ACCEPT RFD - - -

END-ADD X X X -

END-CALL X X X -

END-COMPUTE X X X -

END-DELETE X X X -

END-DISPLAY RFD - - -

END-DIVIDE X X X -

END-EVALUATE X X X -

END-EXEC X X* - -

END-IF X X X -

END-INVOKE X X - -

END-MULTIPLY X X X -

END-OF-PAGE X X X X

END-PERFORM X X X -

END-READ X X X -

END-RECEIVE UNS UNS UNS -

END-RETURN X X X -

END-REWRITE X X X -

END-SEARCH X X X -

END-START X X X -

END-STRING X X X -

END-SUBTRACT X X X -

END-UNSTRING X X X -

END-WRITE X X X -

END-XML X - - -

ENDING X X X X

ENTER X X X X

ENTRY X X X X

ENVIRONMENT X X X X

238 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

EO RFD - - -

EOP X X X X

EQUAL X X X X

ERROR X X X X

ESI UNS UNS UNS X

EVALUATE X X X -

EVERY X X X X

EXAMINE - - - X

EXCEPTION X X X X

EXCEPTION-OBJECT RFD - - -

EXEC X X* - -

EXECUTE X X* - -

EXHIBIT - - - X

EXIT X X X X

EXTEND X X X X

EXTERNAL X X X -

FACTORY X X* - -

FALSE X X X -

FD X X X X

FILE X X X X

FILE-CONTROL X X X X

FILE-LIMIT - - - X

FILE-LIMITS - - - X

FILLER X X X X

FINAL UNS UNS UNS X

FIRST X X X X

FLOAT-EXTENDED RFD - - -

FLOAT-LONG RFD - - -

FLOAT-SHORT RFD - - -

FOOTING X X X X

FOR X X X X

FORMAT RFD RFD RFD -

FREE RFD RFD RFD -

FROM X X X X

FUNCTION X X - -

FUNCTION-ID RFD - - -

FUNCTION-POINTER X - - -

GENERATE UNS UNS UNS X

GET RFD RFD RFD -

Appendix B. COBOL reserved word comparison 239

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

GIVING X X X X

GLOBAL X X X -

GO X X X X

GOBACK X X X X

GREATER X X X X

GROUP UNS UNS UNS X

GROUP-USAGE X - - -

HEADING UNS UNS UNS X

HIGH-VALUE X X X X

HIGH-VALUES X X X X

I-O X X X X

I-O-CONTROL X X X X

ID X X X X

IDENTIFICATION X X X X

IF X X X X

IN X X X X

INDEX X X X X

INDEXED X X X X

INDICATE UNS UNS UNS X

INHERITS X X - -

INITIAL X X X X

INITIALIZE X X X -

INITIATE UNS UNS UNS X

INPUT X X X X

INPUT-OUTPUT X X X X

INSERT CDW CDW CDW X

INSPECT X X X X

INSTALLATION X X X X

INTERFACE RFD - - -

INTERFACE-ID RFD - - -

INTO X X X X

INVALID X X X X

INVOKE X X - -

IS X X X X

JNIENVPTR X - - -

JUST X X X X

JUSTIFIED X X X X

KANJI X X X -

KEY X X X X

240 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

LABEL X X X X

LAST UNS UNS UNS X

LEADING X X X X

LEAVE - - - X

LEFT X X X X

LENGTH X X X X

LESS X X X X

LIMIT UNS UNS UNS X

LIMITS UNS UNS UNS X

LINAGE X X X X

LINAGE-COUNTER X X X -

LINE X X X X

LINE-COUNTER UNS UNS UNS X

LINES X X X X

LINKAGE X X X X

LOCAL-STORAGE X X - -

LOCALE RFD - - -

LOCK X X X X

LOW-VALUE X X X X

LOW-VALUES X X X X

MEMORY X X X X

MERGE X X X X

MESSAGE UNS UNS UNS X

METACLASS - X - -

METHOD X X - -

METHOD-ID X X - -

MINUS RFD - - -

MODE X X X X

MODULES X X X X

MORE-LABELS X X X X

MOVE X X X X

MULTIPLE X X X X

MULTIPLY X X X X

NAMED - - - X

NATIONAL X - - -

NATIONAL-EDITED X - - -

NATIVE X X X X

NEGATIVE X X X X

NESTED RFD - - -

Appendix B. COBOL reserved word comparison 241

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

NEXT X X X X

NO X X X X

NOMINAL - - - X

NOT X X X X

NOTE - - - X

NULL X X X -

NULLS X X X -

NUMBER UNS UNS UNS X

NUMERIC X X X X

NUMERIC-EDITED X X X -

OBJECT X X - -

OBJECT-COMPUTER X X X X

OBJECT-REFERENCE RFD - - -

OCCURS X X X X

OF X X X X

OFF X X X X

OMITTED X X X X

ON X X X X

OPEN X X X X

OPTIONAL X X X X

OPTIONS RFD - - -

OR X X X X

ORDER X X X -

ORGANIZATION X X X X

OTHER X X X -

OTHERWISE - - - X

OUTPUT X X X X

OVERFLOW X X X X

OVERRIDE X X - -

PACKED-DECIMAL X X X -

PADDING X X X -

PAGE X X X X

PAGE-COUNTER UNS UNS UNS X

PASSWORD X X X X

PERFORM X X X X

PF UNS UNS UNS X

PH UNS UNS UNS X

PIC X X X X

PICTURE X X X X

242 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

PLUS UNS UNS UNS X

POINTER X X X X

POSITION X X X X

POSITIONING - - - X

POSITIVE X X X X

PRESENT RFD RFD RFD -

PREVIOUS RFD RFD - -

PRINT-SWITCH - - - X

PRINTING UNS UNS UNS -

PROCEDURE X X X X

PROCEDURE-POINTER X X - -

PROCEDURES X X X X

PROCEED X X X X

PROCESSING X X X X

PROGRAM X X X X

PROGRAM-ID X X X X

PROGRAM-POINTER RFD - - -

PROPERTY RFD - - -

PROTOTYPE RFD - - -

PURGE UNS UNS UNS -

QUEUE UNS UNS UNS X

QUOTE X X X X

QUOTES X X X X

RAISE RFD - - -

RAISING RFD - - -

RANDOM X X X X

RD UNS UNS UNS X

READ X X X X

READY X X X X

RECEIVE UNS UNS UNS X

RECORD X X X X

RECORD-OVERFLOW - - - X

RECORDING X X X X

RECORDS X X X X

RECURSIVE X X - -

REDEFINES X X X X

REEL X X X X

REFERENCE X X X -

REFERENCES X X X X

Appendix B. COBOL reserved word comparison 243

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

RELATIVE X X X X

RELEASE X X X X

RELOAD X X X X

REMAINDER X X X X

REMARKS - - - X

REMOVAL X X X X

RENAMES X X X X

REORG-CRITERIA - - - X

REPLACE X X X -

REPLACING X X X X

REPORT UNS UNS UNS X

REPORTING UNS UNS UNS X

REPORTS UNS UNS UNS X

REPOSITORY X X - -

REREAD - - - X

RERUN X X X X

RESERVE X X X X

RESET X X X X

RESUME RFD - - -

RETRY RFD - - -

RETURN X X X X

RETURN-CODE X X X X

RETURNING X X - -

REVERSED X X X X

REWIND X X X X

REWRITE X X X X

RF UNS UNS UNS X

RH UNS UNS UNS X

RIGHT X X X X

ROUNDED X X X X

RUN X X X X

SAME X X X X

SCREEN RFD - - -

SD X X X X

SEARCH X X X X

SECTION X X X X

SECURITY X X X X

SEEK - - - X

SEGMENT UNS UNS UNS X

244 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

SEGMENT-LIMIT X X X X

SELECT X X X X

SELECTIVE - - - X

SELF X X - -

SEND UNS UNS UNS X

SENTENCE X X X X

SEPARATE X X X X

SEQUENCE X X X X

SEQUENTIAL X X X X

SERVICE X X X X

SET X X X X

SHARING RFD - - -

SHIFT-IN X X X -

SHIFT-OUT X X X -

SIGN X X X X

SIZE X X X X

SKIP1 CDW CDW CDW X

SKIP2 CDW CDW CDW X

SKIP3 CDW CDW CDW X

SORT X X X X

SORT-CONTROL X X X -

SORT-CORE-SIZE X X X X

SORT-FILE-SIZE X X X X

SORT-MERGE X X X X

SORT-MESSAGE X X X X

SORT-MODE-SIZE X X X X

SORT-RETURN X X X X

SOURCE UNS UNS UNS X

SOURCE-COMPUTER X X X X

SOURCES RFD - - -

SPACE X X X X

SPACES X X X X

SPECIAL-NAMES X X X X

SQL X X* - -

STANDARD X X X X

STANDARD-1 X X X X

STANDARD-2 X X X -

START X X X X

STATUS X X X X

Appendix B. COBOL reserved word comparison 245

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

STOP X X X X

STRING X X X X

SUB-QUEUE-1 UNS UNS UNS X

SUB-QUEUE-2 UNS UNS UNS X

SUB-QUEUE-3 UNS UNS UNS X

SUB-SCHEMA RFD RFD RFD -

SUBTRACT X X X X

SUM UNS UNS UNS X

SUPER X X - -

SUPPRESS X X X X

SYMBOLIC X X X X

SYNC X X X X

SYNCHRONIZED X X X X

SYSIN - - - X

SYSLIST - - - X

SYSOUT - - - X

SYSPUNCH X X X X

SYSTEM-DEFAULT RFD - - -

S01 - - - X

S02 - - - X

TABLE UNS UNS UNS X

TALLY X X X X

TALLYING X X X X

TAPE X X X X

TERMINAL UNS UNS UNS X

TERMINATE UNS UNS UNS X

TEST X X X -

TEXT UNS UNS UNS X

THAN X X X X

THEN X X X X

THROUGH X X X X

THRU X X X X

TIME X X X X

TIME-OF-DAY - - - X

TIMES X X X X

TITLE CDW CDW CDW -

TO X X X X

TOP X X X X

TOTALED - - - X

246 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

TOTALING - - - X

TRACE X X X X

TRACK-AREA - - - X

TRACK-LIMIT - - - X

TRACKS - - - X

TRAILING X X X X

TRANSFORM - - - X

TRUE X X X -

TYPE X X* - -

TYPEDEF RFD - - -

UNIT X X X X

UNIVERSAL RFD - - -

UNLOCK RFD - - -

UNSTRING X X X X

UNTIL X X X X

UP X X X X

UPDATE RFD RFD RFD -

UPON X X X X

UPSI-0 - - - X

UPSI-1 - - - X

UPSI-2 - - - X

UPSI-3 - - - X

UPSI-4 - - - X

UPSI-5 - - - X

UPSI-6 - - - X

UPSI-7 - - - X

USAGE X X X X

USE X X X X

USER-DEFAULT RFD - - -

USING X X X X

VAL-STATUS RFD - - -

VALID RFD RFD RFD -

VALIDATE RFD RFD RFD -

VALIDATE-STATUS RFD - - -

VALUE X X X X

VALUES X X X X

VARYING X X X X

VOLATILE X***** - - -

WHEN X X X X

Appendix B. COBOL reserved word comparison 247

||

Table 39. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

WHEN-COMPILED X X X X

WITH X X X X

WORDS X X X X

WORKING-STORAGE X X X X

WRITE X X X X

WRITE-ONLY X X X X

XML X - - -

XML-CODE X - - -

XML-EVENT X - - -

XML-INFORMATION X*** - - -

XML-NAMESPACE X** - - -

XML-NAMESPACE-PREFIX X** - - -

XML-NNAMESPACE X** - - -

XML-NNAMESPACE-PREFIX X** - - -

XML-NTEXT X - - -

XML-SCHEMA X*** - - -

XML-TEXT X - - -

ZERO X X X X

ZEROES X X X X

ZEROS X X X X

_ X*** - - -

< X X X X

<> RFD

<= X X X -

+ X X X X

* X X X X

** X X X X

- X X X X

/ X X X X

> X X X X

>= X X X -

= X X X X

*> X**** - - -

:: RFD

248 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

Appendix C. Conversion tools for source programs

A number of conversion tools are available to help you upgrade OS/VS COBOL,
VS COBOL II, or IBM COBOL source programs to Enterprise COBOL.

This appendix describes the conversion tools available for your assistance during
the conversion. These tools are:
v MIGR compiler option (OS/VS COBOL)
v Other programs that aid conversion

This appendix helps you to determine which, if any, of the tools to use, and
understand how to use them and how to analyze their output to assess the extent
of the remaining conversion effort.

MIGR compiler option
You can use the OS/VS COBOL MIGR compiler option when you are planning to
convert an OS/VS COBOL program to Enterprise COBOL. This option helps you
understand the magnitude of the conversion effort.

MIGR can also ease any planned future conversion by helping you avoid using
OS/VS COBOL source language not supported by Enterprise COBOL. By
compiling your programs using MIGR, you can determine ahead of time which
language elements must be converted.

There are incompatibilities in the following areas:
v New reserved words that are introduced because of COBOL functions that have

been added (previously valid user words might now be illegal)
v Language function that is supported in a different manner
v Language function that is not supported

You can set the MIGR compiler option either as an installation default, or when
compiling an OS/VS COBOL program. When you set MIGR on, the compiler flags
most statements that are changed in or not supported by Enterprise COBOL.

Language differences
The following language differences exist between Enterprise COBOL and OS/VS
COBOL.
v Changes to ALPHABETIC class
v B symbol in PICTURE clause
v Changes to CALL statement
v Changes to CBL compiler directing statement
v Changes to Combined abbreviated relation condition
v DIVIDE ID1 BY ID2 [GIVING ID3] ON SIZE ERROR . . .
v DIVIDE ID1 INTO ID2 [GIVING ID3] ON SIZE ERROR . . .
v EXIT PROGRAM (or STOP RUN) missing at program end
v FILE STATUS clause
v ID1 IS [NOT] ALPHABETIC

© Copyright IBM Corp. 1991, 2019 249

(class test on IF, PERFORM, and SEARCH)
v Changes to IF . . . OTHERWISE statement
v MOVE A TO B

where B is defined as a variable-length data item containing its own ODO
object

v MULTIPLY ID1 BY ID2 [GIVING ID3] ON SIZE ERROR . . .
v Changes to OCCURS DEPENDING ON clause
v Changes in intermediate results for ON SIZE ERROR option
v PERFORM P1 [THRU P2] VARYING ID2 FROM ID3 BY ID4 UNTIL COND-1

AFTER ID5 FROM ID6 BY ID7 UNTIL COND-2 AFTER ID8 FROM ID9 BY
ID10 UNTIL COND-3
1. Where ID6 is (potentially) dependent on ID-2
2. Where ID9 is (potentially) dependent on ID-5
3. Where ID4 is (potentially) dependent on ID-5
4. Where ID7 is (potentially) dependent on ID-8

Dependencies occur when the first identifier or index name (IDx) is identical
to, subscripted with, or qualified with the second identifier. Dependencies
might also occur with a partial or full redefinition of the second identifier.

v Changes to PROGRAM COLLATING SEQUENCE clause
v READ filename RECORD INTO B

where B is defined variable-length data containing the object of the ODO
phrase

v RECORD CONTAINS integer-4 CHARACTERS in the FD section
v Changes to RERUN clause
v Changes to RESERVE clause
v Changes to Reserved word list
v SPECIAL-NAMES: alphabet-name IS xxxxx
v Changes in evaluation for subscripts out of range
v UNSTRING A INTO B . . .

where B is defined variable-length data containing the object of the ODO
phrase

v UNSTRING ID1 DELIMITED BY ID2 INTO ID4 DELIMITER IN ID5 COUNT IN
ID6 WITH POINTER ID7

v UPSI switches and UPSI mnemonic names references
v VALUE clause condition names
v WHEN-COMPILED special register
v WRITE BEFORE/AFTER ADVANCING PAGE statement
v WRITE AFTER POSITIONING

Statements supported with enhanced accuracy
Via the link below, you can see OS/VS COBOL statements supported with
enhanced accuracy in Enterprise COBOL and flagged by a message indicating that
more accurate results might be provided in Enterprise COBOL.

Arithmetic statements
v Definitions of floating-point data items
v Usage of floating-point literals
v Usage of exponentiation

250 Enterprise COBOL for z/OS, V5.2 Migration Guide

LANGLVL(1) statements not supported
The following OS/VS COBOL statements, applicable only to the LANGLVL(1)
compiler option, are not supported in Enterprise COBOL and are flagged when the
MIGR compiler option is specified.
v COPY language—1968
v JUSTIFIED|JUST clause with VALUE
v Changes in scaling for MOVE statement and comparison
v NOT in an abbreviated combined relation condition
v PERFORM statement in independent segments
v RESERVE integer AREAS
v SELECT OPTIONAL clause—1968 standard interpretation
v SPECIAL-NAMES paragraph: use of L, /, and =
v UNSTRING with DELIMITED BY ALL

LANGLVL(1) and LANGLVL(2) statements not supported
The following OS/VS COBOL statements, applicable to both the LANGLVL(1) and
LANGLVL(2) compiler options, are not supported in Enterprise COBOL and are
flagged when the MIGR compiler option is specified.

Communications
v COMMUNICATION SECTION
v ACCEPT MESSAGE
v SEND, RECEIVE, ENABLE, and DISABLE verbs. (Note that RECEIVE

...MESSAGE is LANGLVL sensitive, but is flagged only under Communications.)

Report Writer:

v INITIATE, GENERATE, and TERMINATE verbs
v LINE-COUNTER, PAGE-COUNTER, and PRINT-SWITCH special registers
v Nonnumeric literal IS mnemonic-name in SPECIAL NAMES
v REPORT clause of FD
v REPORT SECTION header
v USE BEFORE REPORTING declarative

The Report Writer Precompiler can convert these statements for you. See “COBOL
Report Writer Precompiler” on page 255.

ISAM:

v APPLY REORG-CRITERIA (ISAM)
v APPLY CORE-INDEX (ISAM)
v I/O verbs—all that reference ISAM files
v ISAM file declarations
v NOMINAL KEY clause
v Organization parameter “I”
v TRACK-AREA clause
v USING KEY clause on START statement

Appendix C. Conversion tools for source programs 251

BDAM:

v ACTUAL KEY clause
v APPLY RECORD-OVERFLOW (BDAM)
v BDAM file declarations
v I/O verbs—all that reference BDAM files
v Organization parameters “D”, “R”, and “W”
v SEEK statement
v TRACK-LIMIT clause

Use for debugging:

v USE FOR DEBUGGING ON [ALL REFERENCES OF] identifiers, file-names,
cd-names

Other statements:

v APPLY RECORD-OVERFLOW
v Assignment-name organization parameter “C” indicating ASCII
v ASSIGN . . . OR
v ASSIGN TO integer system-name
v ASSIGN . . . FOR MULTIPLE REEL/UNIT
v CLOSE . . . WITH POSITIONING/DISP
v CURRENT-DATE and TIME-OF-DAY special registers
v Debug packets
v EXAMINE statement
v EXHIBIT statement
v FILE-LIMITS
v LABEL RECORDS Clause with TOTALING/TOTALED AREA options
v NOTE statement
v ON statement
v OPEN . . . LEAVE/REREAD/DISP
v Qualified index-names

(Using this unsupported format results in a severe (RC = 12) level message.)
v READY TRACE and RESET TRACE statements
v REMARKS paragraph
v RESERVE NO/ALTERNATE AREAS
v SEARCH . . . WHEN condition using KEY item as object, not subject
v SERVICE RELOAD statement
v START . . . USING key statement
v THEN as a statement connector
v TIME-OF-DAY special register
v TRANSFORM statement
v USE AFTER STANDARD ERROR . . . GIVING
v USE BEFORE STANDARD LABEL
v USING procedure-name or file-name on CALL statement

252 Enterprise COBOL for z/OS, V5.2 Migration Guide

Other programs that aid conversion
The following sections describe several conversion tools that offer you help in your
conversion tasks. These programs are:
v The Debug Tool Load Module Analyzer can determine the language translator

for each object in your program objects.
The Debug Tool Load Module Analyzer is included in Debug Tool.

v COBOL and CICS/VS Command Level Conversion Aid (CCCA)
The COBOL and CICS/VS Command Level Conversion Aid is included in
Debug Tool

v CICS application migration aid
v COBOL Report Writer Precompiler

Rational Asset Analyzer
Rational Asset Analyzer provides tools that generate an inventory of enterprise
assets and return an index of the relative effort required to make code changes.

COBOL and CICS/VS Command Level Conversion Aid (CCCA)
The COBOL and CICS/VS Command Level Conversion Aid (CCCA), included
with the IBM Debug Tool product, converts CICS and non-CICS source code into
source code that can be compiled with Enterprise COBOL.

CCCA is updated for reserved word conversions for Enterprise COBOL Version 5.1
by the PTF for APAR PM86253. For Version 5.2, CCCA is updated for reserved
word conversions by the PTF for APAR PI32750.

CCCA is designed to automate identifying incompatible source code and
converting it to Enterprise COBOL source. Using CCCA should significantly reduce
your conversion effort.

CCCA requires that you have an Enterprise COBOL, IBM COBOL, VS COBOL II,
or OS/VS COBOL compiler available when converting CICS programs.

The key CCCA facilities:
v Conversion of most syntax differences between OS/VS COBOL or VS COBOL II

programs and Enterprise COBOL programs
v Elimination of conflicts between OS/VS COBOL, VS COBOL II, and IBM

COBOL user-defined names and Enterprise COBOL reserved words
v Flagging of language elements that cannot be directly converted
v Statement-by-statement diagnostic listing
v Conversion management information, including where-used reports for COPY

books and files
v Conversion of EXEC CICS commands
v Removal or conversion of the BLL (Base Locator for Linkage) section mechanism

and references

CCCA is designed so that you can tailor it to fit the needs of your shop. CCCA
LCPs (Language Conversion Programs), which determine the conversions to be
performed, are written in a COBOL-like language. You can modify the supplied
LCPs or add your own.

Appendix C. Conversion tools for source programs 253

|
|
|

For more details, see the COBOL and CICS/VS Command Level Conversion Aid
manual.

When to use CCCA
If you plan to convert your applications from OS/VS COBOL, VS COBOL II or
IBM COBOL to Enterprise COBOL, evaluate the usefulness of the CCCA to your
conversion project. While the number of changes required to any individual
program might be small, the CCCA will identify those changes, and in the majority
of cases, convert them automatically in a standard fashion. The CCCA converts
both CICS and non-CICS programs. The CCCA converts SERVICE RELOAD
statements and the complicated logic of BLL cell addressing to statements valid for
Enterprise COBOL.

CCCA also handles non-CICS syntax.

CCCA processing of CICS statements
If the CICS option is ON, the BLL definitions and SERVICE RELOAD statements
are removed. If the entire BLL structure is redefined, the redefined structure is
removed. If the BLLs are not defined with a length of 4 bytes, the CICS conversion
cannot be performed.

If needed by the conversion of statements involving the primary BLLs, the
following code is generated in the WORKING-STORAGE SECTION for use with
the POINTER facility:

77 LCP-WS-ADDR-COMP PIC S9(8) COMP.
77 LCP-WS-ADDR-PNTR REDEFINES LCP-WS-ADDR-COMP USAGE POINTER.

EXEC CICS processing: The primary BLLs used with SET options are replaced by
corresponding ADDRESS OF special register. For example:

EXEC CICS READ ... SET(BLL1) ...

is replaced by:
EXEC CICS READ ... SET(ADDRESS OF REC1) ...

The statements involved are:
v CONVERSE
v GETMAIN
v ISSUE RECEIVE
v LOAD
v POST
v READ
v READNEXT
v READPREV
v READQ
v RECEIVE
v RETRIEVE
v SEND CONTROL
v SEND PAGE
v SEND TEXT

The primary BLLs used with CICS ADDRESS statements are replaced by the
corresponding Enterprise COBOL ADDRESS OF special register.

254 Enterprise COBOL for z/OS, V5.2 Migration Guide

For example:
EXEC CICS TWA(BLL).

is replaced by:
EXEC CICS TWA(ADDRESS OF TWA).

The options involved are: CSA, CWA, EIB, TCTUA, and TWA.

Statements dealing with the primary BLLs
The statements dealing with the primary BLLs are shown in Table 40.

Statements dealing with the secondary BLLs are replaced by CONTINUE.

Table 40. COBOL statements dealing with primary BLLs

Original source Source after conversion

MOVE BLL1 TO BLL2 SET ADDRESS OF REC2 TO ADDRESS OF REC1

MOVE ID TO BLL MOVE ID TO LCP-WS-ADDR-COMP
SET ADDRESS OF REC1 TO LCP-WS-ADDR-PNTR

MOVE BLL TO ID SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
MOVE LCP-WS-ADDR-COMP TO ID

ADD ID1, .. TO BLL SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD ID1, TO LCP-WS-ADDR-COMP
SET ADDRESS OF REC TO LCP-WS-ADDR-PNTR

ADD BLL TO ID1, ID2 SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD LCP-WS-ADDR-COMP TO ID1, ID2

ADD ID1, ID2 GIVING BLL ADD ID1, ID2 GIVING LCP-WS-ADDR-COMP
SET ADDRESS OF REC TO LCP-WS-ADDR-PNTR

ADD ID, BLL1 GIVING BLL2
BLL3

SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD ID, LCP-WS-ADDR-COMP GIVING
LCP-WS-ADDR-COMP
SET ADDRESS OF REC2 TO LCP-WS-ADDR-PNTR
SET ADDRESS OF REC3 TO LCP-WS-ADDR-PNTR

ADD ID1, BLL1 GIVING ID2
ID3

SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD ID1, LCP-WS-ADDR-COMP GIVING ID2 ID3

SUBTRACT statements The conversion is performed in the same way as ADD.

COMPUTE BLL = exp (BLL) SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
COMPUTE LCP-WS-ADDR-COMP =
exp (LCP-WS-ADDR-COMP)

COMPUTE ID = exp (BLL) SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
COMPUTE ID = exp (LCP-WS-ADDR-COMP)

COMPUTE BLL = exp ... COMPUTE LCP-WS-ADDR-COMP = exp ...

COBOL Report Writer Precompiler
You can use the Report Writer Precompiler, product number 5798-DYR, to compile
applications that contain Report Writer statements, or to permanently convert
Report Writer statements to valid Enterprise COBOL statements.

The Report Writer Precompiler offers the following features:
v Extended Report Writer language capabilities

Appendix C. Conversion tools for source programs 255

v Integration with the target COBOL compiler—as though Report Writer
statements in the source program are being processed by the COBOL compiler
itself

v Single consolidated source listing merges information from the precompiler
listing and the COBOL compiler listings

v COPY library members can contain Report Writer statements
v Supports the Enterprise COBOL nested COPY feature
v Performs a diagnostic check of the input Report Writer source statements
v Can be run in stand-alone mode to convert Report Writer statements in your

COBOL programs into non-Report Writer COBOL source statements acceptable
to the Enterprise COBOL compiler

For more detail, see COBOL Report Writer Precompiler Programmer's Manual and
COBOL Report Writer Precompiler Installation and Operation.

Debug Tool Load Module Analyzer
The Debug Tool Load Module Analyzer analyzes program objects to determine the
language translator (compiler or assembler) that was used to generate the object
for each CSECT.

This program can process all or selected program objects in a concatenation of PDS
or PDSE data sets. Load Module Analyzer is included with the IBM Debug Tool
product.

Free and open source COBOL Analyzer
The free and open source COBOL Analyzer helps you inventory your existing
program objects by reporting the compiler, compiler release, and compiler options
used.

Download the free COBOL Analyzer from http://cbttape.org/cbtdowns.htm. It is
named as File # 321 COBOL Analyzer from Roland Schiradin & post processor on that
web page.

256 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|
|
|

|
|
|

http://cbttape.org/cbtdowns.htm

Appendix D. Applications with COBOL and assembler

If your applications contain mixed COBOL and assembler programs, you might
have to make some modifications to the applications.

Do the following tasks as needed:
v Determining requirements for calling and called assembler programs
v Determining which assembler/COBOL calls are supported under non-CICS
v Determining which assembler/COBOL calls are supported under CICS
v Converting programs that change the program mask
v Upgrading applications that use an assembler driver
v Modifying applications in which assembler loads, calls, or deletes COBOL

programs
v Saving and restoring the high halves of General Purpose Registers (GPRs) in

assembler programs that will call or be called by Enterprise COBOL V5

Some information about applications that contain both assembler and COBOL
programs is included in other sections of this documentation. For example, you
can find information about assembler programs that pass procedure names in
“Language elements that changed from OS/VS COBOL” on page 70

Called assembler programs
A called assembler program must save the registers and store other information in
the save area passed to it by the COBOL program. In particular, the COBOL save
area must be properly back chained from the save area of an assembler program.
The assembler program must also contain a return routine that:
v Loads the address of the COBOL save area back into R13
v Restores the contents of the other registers
v Optionally sets a return code in R15
v Branches to the address in R14
v Returns to the COBOL caller in the same AMODE that was in use when it was

called

SVC LINK and COBOL run-unit boundary
If the target of SVC LINK is a non-Language Environment-conforming assembler
program, and the assembler program later calls a COBOL program, the Language
Environment enclave and COBOL run-unit boundary will be at the COBOL
program, not at the assembler program. The main program of the enclave (and run
unit) is the COBOL program.

If the target of SVC LINK is a Language Environment-conforming assembler
program, the Language Environment enclave boundary will be at the assembler
program. The assembler program is the main program of the enclave (provided
MAIN=YES is specified in the CEEENTRY macro). If the assembler program calls a
COBOL program at a later time, the COBOL program is a subprogram.

© Copyright IBM Corp. 1991, 2019 257

|
|

Runtime support for assembler COBOL calls under non-CICS
The combinations of calls involving COBOL programs and assembler programs
and whether the calls are supported when running under Language Environment
under non-CICS are listed in the following table.

For the calls that are not supported, Table 41 also lists the symptom (message or
abend code) that is returned in most cases. In some cases, depending on the
application environment, the symptom might not occur. You could receive a
different failure, or the application might appear to run successfully.

The term, IBM COBOL refers to COBOL/370, COBOL for MVS &VM and COBOL
for OS/390 & VM.

Table 41. Language Environment supported calls between COBOL programs and assembler programs under
non-CICS; Yes indicates that a call is supported.

Calls from Issued to

Call type Program issuing
Enterprise
COBOL

IBM
COBOL

VS
COBOL
II

OS/VS
COBOL

LanEnv1

Asm2

main

LanEnv1

Asm
subrtn

Non-
LanEnv
Asm

Static Enterprise COBOL Yes Yes Yes No No3 Yes Yes

IBM COBOL Yes Yes Yes Yes No3 Yes Yes

VS COBOL II with
RES Yes Yes Yes Yes No3 Yes4 Yes

VS COBOL II with
NORES No Yes Yes Yes No3 Yes4 Yes

OS/VS COBOL No Yes Yes Yes No3 Yes4 Yes

Dynamic Enterprise COBOL Yes Yes Yes No No3 Yes Yes

IBM COBOL Yes Yes Yes Yes No3 Yes Yes

VS COBOL II with
RES Yes Yes Yes Yes No3 Yes Yes

VS COBOL II with
NORES No Yes Yes Yes No3 Yes Yes

OS/VS COBOL No Yes Yes Yes No3 Yes Yes

VCON Asm (LanEnv) Yes Yes Yes Yes No3 Yes Yes

Asm
(non-LanEnv) Yes Yes Yes Yes Yes5 No6 Yes

LOAD Asm (LanEnv) Yes Yes Yes Yes No3 Yes Yes

BALR Asm
(non-LanEnv) Yes Yes Yes Yes Yes5 No6 Yes

LINK Asm (LanEnv) Yes Yes Yes Yes7 Yes No6 Yes

Asm
(non-LanEnv) Yes Yes Yes Yes7 Yes No6 Yes

258 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 41. Language Environment supported calls between COBOL programs and assembler programs under
non-CICS; Yes indicates that a call is supported. (continued)

Calls from Issued to

Call type Program issuing
Enterprise
COBOL

IBM
COBOL

VS
COBOL
II

OS/VS
COBOL

LanEnv1

Asm2

main

LanEnv1

Asm
subrtn

Non-
LanEnv
Asm

The failure symptoms described in these notes are as they would occur when the Language Environment
TRAP(ON) and ABTERMENC(ABEND) runtime options are in effect.

1. (LanEnv stands for Language Environment.) CEEENTRY macro with MAIN=YES creates a Language
Environment assembler main. If you specify MAIN=NO on the CEEENTRY macro, a Language Environment
assembler subroutine is created. The default is MAIN=YES.

2. (Asm stands for assembler.)

3. Invoking a Language Environment assembler main program from an established Language Environment enclave
is not recommended (unless through the use of SVC LINK). For this reason, the table entries associated with this
footnote are marked No. A nested enclave is not created and, therefore, the program runs as a subprogram in
the invoking enclave. If you follow this recommendation, you might avoid the need for reprogramming in the
future.

4. You must specify NAB=NO and MAIN=NO on the CEEENTRY macro. Otherwise, you will receive failure
symptom 0C1, 0C4, or 0C5 abend.

5. If the non-Language Environment assembler caller is running within an established Language Environment
enclave, see note 3.

6. Failure symptom of 0C1, 0C4, or 0C5 abend.

7. Except when OS/VS COBOL programs exist in another established Language Environment enclave. For detail,
see Failure symptom of: message IGZ0005S.

Runtime support for assembler COBOL calls under CICS
The combinations of calls involving COBOL programs and assembler programs
and whether the calls are supported when running under Language Environment
under CICS are listed in the following table.

For the calls that are not supported, Table 42 also lists the symptom (message or
abend code) that will be returned in most cases. In some cases, depending on the
application environment, the symptom might not occur; you could receive a
different failure, or the application might appear to run successfully.

The term IBM COBOL refers to COBOL/370, COBOL for MVS & VM, and COBOL
for OS/390 & VM.

Table 42. Language Environment supported calls between COBOL programs and assembler programs that run under
CICS; Yes indicates that a call is supported.

Calls from Issued to

Call type Program issuing
Enterprise
COBOL

IBM
COBOL

VS
COBOL
II

LanEnv1

Asm2 main

LanEnv1

Asm
subrtn

Non-LanEnv
Asm

Static Enterprise COBOL Yes Yes Yes No3 Yes Yes

IBM COBOL Yes Yes Yes No3 No4 Yes

VS COBOL II Yes Yes Yes No3 No4 Yes

Dynamic Enterprise COBOL Yes Yes Yes No3 Yes Yes

IBM COBOL Yes Yes Yes No3 Yes Yes

VS COBOL II Yes Yes Yes No3 Yes Yes

Appendix D. Applications with COBOL and assembler 259

Table 42. Language Environment supported calls between COBOL programs and assembler programs that run under
CICS; Yes indicates that a call is supported. (continued)

Calls from Issued to

Call type Program issuing
Enterprise
COBOL

IBM
COBOL

VS
COBOL
II

LanEnv1

Asm2 main

LanEnv1

Asm
subrtn

Non-LanEnv
Asm

EXEC CICS
LINK

Enterprise COBOL Yes Yes Yes No3 No4 Yes

IBM COBOL Yes Yes Yes No3 No4 Yes

VS COBOL II Yes Yes Yes No3 No4 Yes

VCON Asm (LanEnv) Yes Yes No4 No3 Yes Yes

Asm (non-LanEnv) No4 No4 No4 No3 No4 Yes

EXEC CICS
LINK

Asm (non-LanEnv) Yes Yes Yes No3 No4 Yes

Asm (non-LanEnv) Yes Yes Yes No3 No4 Yes

The failure symptoms described in these notes are as they would occur when the Language Environment
TRAP(ON) and ABTERMENC(ABEND) runtime options are in effect.

1. (LanEnv stands for Language Environment.) CEEENTRY macro with MAIN=YES creates a Language
Environment assembler main. If you specify MAIN=NO on the CEEENTRY macro, a Language Environment
assembler subroutine is created. The default is MAIN=YES.

2. (Asm stands for assembler.)

3. There is no support for Language Environment-conforming assembler main programs under CICS at a level
earlier than CICS TS Version 3. Failure symptom: Unpredictable. The applications might appear to run
successfully.

4. Failure symptom of: ASRA abend (caused by type 1 or 5 program check).

Converting programs that change the program mask
When a VS COBOL II program calls an assembler program that changes the
program mask (for example, uses an SPM instruction), the program mask is
restored after the call to the assembler program.

With Enterprise COBOL, the program mask is not restored. Thus, if you change the
program mask in your assembler program, you must restore it before returning to
the COBOL program. Failure to restore the program mask could result in
undetected data errors, such as fixed-point overflow, decimal overflow, exponent
underflow, and significance exceptions.

Upgrading applications that use an assembler driver
There are three methods for upgrading applications that use an assembler driver to
call COBOL subroutines:
v Convert the assembler driver to a Language Environment-conforming assembler

driver.
v Modify the assembler driver to set up the Language Environment environment.
v Use the RTEREUS runtime option if the assembler driver cannot be modified.

These methods are described in the sections below. In all cases, you upgrade the
COBOL subroutines in the same way as described in the other COBOL conversion
scenarios.

260 Enterprise COBOL for z/OS, V5.2 Migration Guide

Convert the assembler driver
To upgrade an application that has an assembler driver, you can change the
assembler driver to be a Language Environment-conforming assembler main
program. For details about how to make your existing assembler programs
Language Environment-conforming, see the Language Environment Programming
Guide.

Modify the assembler driver
If the assembler driver uses either IGZERRE or ILBOSTP0, it must be modified.

Replace the OS/VS COBOL ILBOSTP0 or IGZERRE routine with the Language
Environment CEEPIPI INIT_SUB, CEEPIPI INIT_ MAIN, and CEEPIPI TERM
functions. These Language Environment routines have a convenient
complementary termination function that was not available with OS/VS COBOL.

Use an unmodified assembler driver
If you cannot (or do not want to) modify the non-COBOL driver, you can use the
unmodified driver while specifying the Language Environment RTEREUS runtime
option. (RTEREUS initializes the runtime environment for reusability when the first
COBOL program is invoked.)

Important: RTEREUS is not recommended for all applications; in some instances, it
exhibits undesirable behavior. Before using RTEREUS, thoroughly explore the
possible side effects and understand the impact on your application.

Assembler programs that load and BALR to MAIN COBOL programs
Previous to Enterprise COBOL V5, you could LOAD and BALR, then BALR again
to OS/VS COBOL main programs from assembler. But it is not supported to
LOAD and BALR then BALR again to a main program that was compiled with
Enterprise COBOL (or any newer compiler) with the NORENT option. If you
recompile an OS/VS COBOL program (in the above case of BALR again) with
Enterprise COBOL and use the NORENT compiler option, the program will abend
with message IGZ0044S. There are several possible solutions:
v Compile with RENT.
v Change the assembler code to DELETE and LOAD again before a subsequent

BALR to NORENT COBOL.
v Change the assembler program to be Language Environment-conforming.

Assembler programs that load and delete COBOL programs
Under Language Environment, assembler programs can SVC load and SVC delete
program objects that contain any of the following programs:
v VS COBOL II programs compiled with the NORENT option
v IBM COBOL programs compiled with the NORENT option
v Enterprise COBOL programs compiled with the NORENT option

Restriction: Debug Tool does not support COBOL programs that are in program
objects that are deleted by assembler using SVC delete.

Under Language Environment, assembler programs can SVC load but cannot SVC
delete program objects that contain any of the following programs:
v VS COBOL II programs compiled with the RENT option

Appendix D. Applications with COBOL and assembler 261

|
|
|
|
|
|
|

|

|
|

|

v IBM COBOL programs compiled with the RENT option
v Enterprise COBOL programs compiled with the RENT option

If assembler programs SVC delete program objects that contain these kinds of
programs, unpredictable results can occur.

For assembler programs that need to load and delete program objects that contain
a COBOL RENT program, perform one of the following tasks:
v Have the assembler program statically call a COBOL program that performs the

dynamic call and performs the CANCEL.
v Use the Language Environment-provided CEEFETCH and CEERELES macros.

Saving and restoring the high halves of General Purpose Registers in
assembler programs

In this topic, you can find information about how to save and restore the high
halves of General Purpose Registers (GPRs) in assembler programs that will call or
be called by Enterprise COBOL V5.

Do not use the F5SA or F8SA save area formats as described in the MVS
Programming: Assembler Services Guide.

You can save the high halves of GPRs to and restore from anywhere in your user
storage, but you might want to choose the model used by COBOL when
HGPR(PRESERVE) is in effect. In this case, the COBOL V5 compiler always uses a
block of storage in the same relative location as is used to save the lower halves of
the registers. Here is an example of what COBOL V5 does to save and restore the
high halves of GPRs:
1. On entry:

a. Reserve 72 bytes in DSA, currently at about offset +136
b. Specify STMH R1,R15,136(,R13)

2. On exit, specify LMH R1,R15,136(,R13)

Finding the program name and compile time stamp in Enterprise
COBOL V5 programs

You can find the program name (and PPA1) for COBOL V5 programs at run time.
1. From the current Register 13, follow the backchain pointer (R13 + 4).
2. The Entry Point address (EP@) is in the backchain, in the R15 slot (backchain

address + 16).
3. At the EP@, look at the word in EP@+12. An integer is there, which is the offset

from the entry point to the PPA1 in this program.
4. Add this integer to the EP@. This is the PPA1 address.
5. The program name is in the PPA1. (The first byte in PPA1 times 2 (byte *2)

gives the offset of the program name in PPA1.)
6. The first 2 bytes of the program name are the length of the name, followed by

the name.

262 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|

|

|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|
|

|
|

Appendix E. Option comparison

The following table describes the Enterprise COBOL V5 compiler options and
installation options, and explains how the options compare with those in OS/VS
COBOL, VS COBOL II, IBM COBOL, and Enterprise COBOL V3 and V4.

For complete descriptions of the Enterprise COBOL V5 options, see the Enterprise
COBOL Programming Guide and the Enterprise COBOL Customization Guide.

Table 43. Option comparison

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

ADATA X X X

Produces associated data file at
compilation. NOADATA is the default.
The Enterprise COBOL ADATA option
replaces the COBOL/370 EVENTS
option.

ADV X X X X X
Adds print control byte at beginning of
records. ADV is the default.

AFP X

Controls the compiler usage of the
Additional Floating Point (AFP)
registers that are provided by
z/Architecture processors.
AFP(VOLATILE) is the default.

ANALYZE X**

Causes the compiler to check the
syntax of embedded SQL and CICS
statements in addition to native
COBOL statements.

ALOWCBL X X X X

Allows PROCESS or CBL statements in
source programs. You can only specify
this option at installation time.
ALOWCBL is the default.

APOST X X X X X

Specifies apostrophe (') as delimiter for
literals. QUOTE is the default.

In Enterprise COBOL, literals can be
delimited with either quotes or
apostrophes regardless of whether
APOST or QUOTES is in effect. If
APOST is used, the figurative constant
QUOTE/QUOTES represents one or
more apostrophe (') characters.

ARCH X

Specifies the machine architecture for
which the executable program
instructions are to be generated.
ARCH(7) is the default.

© Copyright IBM Corp. 1991, 2019 263

|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

ARITH X X X

Sets the maximum number of digits
that you can specify for decimal data
and affects the precision of
intermediate results. ARITH(COMPAT)
is the default.

With ARITH(COMPAT) you can
specify 18 digits in the PICTURE
clause, fixed-point numeric literals, and
arguments to NUMVAL and
NUMVAL-C, and 28 digits in
arguments to FACTORIAL.

With ARITH(EXTEND) you can specify
31 digits in the PICTURE clause,
fixed-point numeric literals, and
arguments to NUMVAL and
NUMVAL-C, and 29 digits in
arguments to FACTORIAL.

AWO X X X X

Activates APPLY WRITE-ONLY
processing for physical sequential files
with VB format. NOAWO is the
default.

BLOCK0 X X

Activates BLOCK CONTAINS 0 clause
for all physical sequential files in the
program that specify neither BLOCK
CONTAINS nor RECORDING MODE
U in the file description.

BUF X

Allocates buffer storage for compiler
work data sets. In Enterprise COBOL,
the BUFSIZE option replaces the
OS/VS COBOL BUF option.

BUFSIZE X X X X

Allocates buffer storage for compiler
work data sets. Three suboptions are
available: BUFSIZE(nnnnn),
BUFSIZE(nnnK), and BUFSIZE(4096).
BUFSIZE(4096) is the default. BUFSIZE
replaces the OS/VS COBOL BUF
option.

CICS X X X
Enables the integrated CICS translator
capability and specifies CICS options.
NOCICS is the default.

CLIST X

Produces a condensed PROCEDURE
DIVISION listing plus tables and
program statistics. NOCLIST is the
default.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL OFFSET option
replaces the OS/VS COBOL CLIST
option.

264 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

CMPR2 X X

Specified generation of IBM COBOL
source code compatible with VS
COBOL II Release 2 or other VS
COBOL II CMPR2 behavior.

NOCMPR2 is the default behavior
which cannot be changed. NOCMPR2
specifies the full use of all IBM
COBOL language features (including
language extensions for object-oriented
COBOL and improved interoperability
with C programs).

The CMPR2 option is obsolete in
Enterprise COBOL V4, but was
tolerated with informational or
warning messages to ease migration
from V3 or prior versions. With
Enterprise COBOL V5 and V6, CMPR2
option is no longer tolerated, and
specifying it will result in an error
message.

CODEPAGE X X

Specifies the code page used for
encoding contents of alphanumeric
and DBCS data items at run time as
well as alphanumeric, national, and
DBCS literals in a COBOL source
program. CODEPAGE(1140) is the
default.

COMPILE X X X X

Requests an unconditional full
compilation. Other options are
NOCOMPILE and
NOCOMPILE(W|E|S). The default is
NOCOMPILE(S).

NOCOMPILE specifies unconditional
syntax checking.
NOCOMPILE(W|E|S) specify
conditional syntax checking based on
the severity of the error.

COMPILE is equivalent to the OS/VS
COBOL NOSYNTAX and
NOCSYNTAX options. NOCOMPILE is
equivalent to the OS/VS COBOL
SYNTAX options.
NOCOMPILE(W|E|S) is equivalent to
the OS/VS COBOL CSYNTAX and
SUPMAP options.

Appendix E. Option comparison 265

|
|
|
|
|
|
|
|
|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

COPYRIGHT X

Use COPYRIGHT to place a string in
the object module if the object module
is generated. If the object is linked into
a program object, the string is loaded
into memory with that program object.

COUNT X

Produces verb execution summaries at
the end of program execution. Each
verb is identified by procedure-name
and by statement number, and the
number of times it was used is
indicated.

A similar function is provided with
Debug Tool.

CURRENCY X X X

Defines the default currency symbol.
When both the CURRENCY option
and the CURRENCY SIGN clause are
used in a program, the symbol
specified in the CURRENCY SIGN
clause is considered the currency
symbol in a PICTURE clause when
that symbol is used.

NOCURRENCY is the default and
indicates that no alternate default
currency sign is provided by the
CURRENCY option.

DATA(24)
DATA(31)

X X X X

Specifies whether reentrant program
data areas are acquired above or below
the 16-MB line. With DATA(24),
reentrant programs data is acquired
below the 16-MB line. With DATA(31),
reentrant programs data is acquired
above the 16-MB line. DATA(31) is the
default.

DATEPROC X X

Enables the millennium language
extensions of the COBOL compiler.
Options consist of DATEPROC(FLAG),
DATEPROC(NOFLAG),
DATEPROC(TRIG),
DATEPROC(NOTRIG) and
NODATEPROC.

DBCS X X X X

Tells the compiler to recognize DBCS
shift-in and shift-out codes.

DBCS is the default.

266 Enterprise COBOL for z/OS, V5.2 Migration Guide

||||||

|
|
|
|
|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

DBCSXREF=code X X X X

Specifies that an ordering program is
to be used for cross-references to DBCS
characters, where code sets parameters
giving information about the DBCS
Ordering Support Program. You can
only specify DBCSXREF at installation
time.

DBCSXREF=NO is the default.

DECK X X X X X

Generates object code as 80-character
card images and places it in
SYSPUNCH file. NODECK is the
default.

DIAGTRUNC

X X X

Causes the compiler to issue a
severity-4 (warning) diagnostic
message for MOVE statements with
numeric receivers when the receiving
data has fewer integer positions than
the sending data item or literal.
NODIAGTRUNC is the default.

DISPSIGN
X

Controls output formatting for
DISPLAY of signed numeric items.
DISPSIGN(COMPAT) is the default.

DLL X X X

Enables the compiler to generate an
object module that is enabled for DLL
(Dynamic Link Library) support.
NODLL is the default.

DMAP X

Produces a listing of the DATA
DIVISION and implicitly declared
items. NODMAP is the default.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL MAP option
replaces the OS/VS COBOL DMAP
option.

DUMP X X X X X
Specifies that a system dump be
produced at end of compilation.
NODUMP is the default.

DYNAM X X X X X

Changes the behavior of CALL literal
statements to load subprograms
dynamically at run time. NODYNAM
is the default. With NODYNAM,
CALL literal statements cause
subprograms to be statically
link-edited in the program object.

Appendix E. Option comparison 267

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

EXIT(INEXIT
(IN-id)),
EXIT(LIBEXIT
(LIB-id)),
EXIT(PRTEXIT
(PRT-id)),
EXIT(ADEXIT
(ADT-id)),
and
EXIT(MSGEXIT
(MSG-id))

X X X X

Allows the compiler to accept
user-supplied modules. (Each string is
an optional user-supplied input string
to the exit module, and each mod
names a user-supplied exit module.)

The ADEXIT suboption is only
available with COBOL for MVS & VM
and later compilers.

The MSGEXIT suboption is only
available with Enterprise COBOL V4.2
and later compilers.

NOEXIT is the default.

EXPORTALL X X X

Instructs the compiler to automatically
export certain symbols when the object
deck is link-edited to form a DLL.
NOEXPORTALL is the default.

FASTSRT X X X X

Specifies fast sorting by the IBM
DFSORT licensed program.
NOFASTSRT is the default, and
specifies that Enterprise COBOL will
do SORT or MERGE input/output.

FLAG X X X X X

Specifies that syntax messages are
produced at the level indicated. For
OS/VS COBOL the FLAG options are:
FLAGW and FLAGE. For Enterprise
COBOL, the FLAG options are:

FLAG(I) FLAG(W) FLAG(E)
FLAG(S) FLAG(U)
FLAG(I|W|E|S|U,I|W|E|S|U)

For VS COBOL II and IBM COBOL
FLAG(I) is the default. For Enterprise
COBOL, FLAG(I,I) is the default.

FLAGMIG X X X

Specifies NOCMPR2 flagging for
possible semantic changes from VS
COBOL II Release 2 or other programs
with CMPR2 behavior.

FLAGMIG4 X****

APAR PM93450 for Enterprise COBOL
Version 4 Release 2 adds option
FLAGMIG4 to identify language
elements in Enterprise COBOL Version
4 programs that are not supported, or
that are supported differently in
Enterprise COBOL Version 5. The
compiler will generate a warning
diagnostic messages for all such
language elements.

268 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

FLAGSTD X X X X

Specifies 85 COBOL Standard flagging.
For COBOL for OS/390 & VM and
COBOL for MVS & VM, FLAGSTD
also flags language syntax for
object-oriented COBOL, improved C
interoperability, and use of the
PGMNAME(LONGMIXED) compiler
option.

NOFLAGSTD is the default.

FDUMP X

Produces a dump with debugging
information when an application ends
with an abend. NOFDUMP is the
default.

The Enterprise COBOL TEST option
replaces the VS COBOL II FDUMP
option.

HGPR X

Controls the compiler usage of the
64-bit registers provided by
z/Architecture processors.
HGPR(PRESERVE) is the default.

IDLGEN X

In addition to the normal compile of
the COBOL source file, IDLGEN
generates IDL definitions for defined
classes. NOIDLGEN is the default.

INITCHECK X*******

Controls whether to check for
uninitialized data items and issue
warning messages when they are used
without being initialized.
NOINITCHECK is the default.

INITCHECK is introduced in
Enterprise COBOL V5.2 with PTF for
APAR PI69197 installed. For details,
see INITCHECK in the Enterprise
COBOL Programming Guide.

INTDATE X X X

Determines the starting date for
integer format dates when used with
date intrinsic functions.
INTDATE(ANSI) uses 85 COBOL
Standard starting date, where Day 1 =
January 1, 1601. INTDATE(LILIAN)
uses the Language Environment Lilian
starting date, where Day 1 = October
15, 1582.

INTDATE(ANSI) is the default.

Appendix E. Option comparison 269

||||||

|
|
|
|
|

|
|
|
|
|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

LANGUAGE X X X X

LANGUAGE(AAa...a) specifies
language in which compiler messages
are issued, where AAa...a is:

UE or UENGLISH
Uppercase English

EN or ENGLISH
Mixed-case English

JA, JP, or JAPANESE
Japanese, using the KANJI
character set

LANGUAGE=(EN) is the default.

LIB X X X X
Specifies that the program uses the
COPY library.

LINECNT=nn X

Specifies the number of lines per page
on the output listing. For VS COBOL
II, IBM COBOL, and Enterprise
COBOL, the LINECOUNT compiler
option replaces the OS/VS COBOL
LINECNT option.

LINECOUNT X X X X

Specifies the number of lines per page
on the output listing. The two formats
for LINECOUNT are: LINECOUNT(60)
and LINECOUNT(nn).
LINECOUNT(60) is the default.

LINECOUNT replaces the OS/VS
COBOL LINECNT option.

LIST X X X X

Produces a listing of assembler
language expansion of source code.
NOLIST is the default.

LIST replaces the OS/VS COBOL
PMAP option.

LOAD X

Stores object code on disk or tape for
input to linkage-editor. NOLOAD is
default.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL OBJECT option
replaces the OS/VS COBOL LOAD
option.

270 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

MAP X X X X

Produces a listing of the DATA
DIVISION and implicitly declared
items. NOMAP is the default.

MAP replaces the OS/VS COBOL
DMAP option.

In Enterprise COBOL V5.1 with the
latest service installed, and Enterprise
COBOL V5.2, new suboptions HEX
and DEC are added to control whether
hexadecimal or decimal offsets are
shown for MAP output in the compiler
listing.

Enterprise COBOL V5.1 at base level
always produced MAP output with
decimal offsets, while earlier compilers
all produced MAP output with
hexadecimal offsets.

If MAP is specified with no suboption,
it will be accepted as MAP(HEX). This
will give you the same behavior in
Enterprise COBOL V5 as in earlier
COBOL compilers.

MAXPCF(n) X

Instructs the compiler not to optimize
code if the program contains a
complexity factor greater than n. The
default is MAXPCF(60000).

MDECK X X

Causes output from the library
processing (the expansion of COPY,
BASIS, REPLACE, and EXEC SQL
INCLUDE statements) to be written to
a file. NOMDECK is the default.

NAME X X X X X

Indicates that a linkage-editor NAME
statement is appended to each object
module created. For VS COBOL II,
IBM COBOL, and Enterprise COBOL,
NAME has the suboptions
(ALIAS|NOALIAS). If ALIAS is
specified, an ALIAS statement is also
generated for each ENTRY statement

NONAME is the default.

NSYMBOL

X X

Controls the interpretation of the "N"
symbol used in literals and picture
clauses, indicating whether national or
DBCS processing is assumed.

NSYMBOL(NATIONAL) is the default.

Appendix E. Option comparison 271

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

NUM X

Prints line numbers in error messages
and listings. NONUM is the default.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL NUMBER option
replaces the OS/VS COBOL NUM
option.

NUMBER X X X X

Prints line numbers in error messages
and listings. NONUMBER is the
default.

The NUMBER option replaces the
OS/VS COBOL NUM option.

NUMCHECK X*******

Controls whether to generate implicit
numeric class tests for zoned decimal
and packed decimal data items that are
used as sending data items, and
whether to generate SIZE ERROR
checking for binary data items.

NUMCHECK is introduced in
Enterprise COBOL V5.2 with PTF for
APAR PI81006 installed. For details,
see NUMCHECK in the Enterprise
COBOL Programming Guide.

NUMCLS X X X X

Determines, together with the
NUMPROC option, valid sign
configurations for numeric items in the
NUMERIC class test. NUMCLS has
two suboptions: (PRIM/ALT).
NUMCLS(PRIM) is the default.

You can specify NUMCLS only at
installation time. For more information,
see the:

v Enterprise COBOL Customization
Guide

272 Enterprise COBOL for z/OS, V5.2 Migration Guide

||||||

|
|
|
|
|
|

|
|
|
|
|

||||||

|
|
|
|
|
|

|
|
|

|
|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

NUMPROC X X X X

Handles packed/zoned decimal signs
as follows:

NUMPROC(PFD)
Decimal fields assumed to have
standard S/390® signs

NUMPROC(NOPFD)
The compiler does any necessary
sign conversion of nonpreferred
but valid signs.

NUMPROC(MIG)
Enterprise COBOL processes sign
conversion in a manner very
similar to OS/VS COBOL. This
suboption is not supported in
Enterprise COBOL V5.

To migrate your programs
compiled with NUMPROC(MIG)
to Enterprise COBOL V5.2,
consider using the NUMCHECK
compiler option to help you
migrate to NUMPROC(PFD):

1. Compile your programs with
NUMCHECK(ZON,PAC) and
NUMPROC(PFD).

2. Run a thorough regression test
with a good breadth of input
data.

If your applications get no
NUMCHECK messages or
NUMCHECK abends, you can
safely compile with
NUMPROC(PFD) and
NONUMCHECK for production.
This will not only solve the
invalid data problem, but
NUMPROC(PFD) is the most
efficient setting for the NUMPROC
compiler option.

NUMCHECK is introduced in
Enterprise COBOL V5.2 with PTF
for APAR PI81006 installed. For
details, see NUMCHECK in the
Enterprise COBOL Programming
Guide.

NUMPROC(NOPFD) is the default.

Appendix E. Option comparison 273

|

|

|

|||
|
|

|
|
|
|
|

||||||

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

OBJECT X X X X

Stores object code on disk or tape for
input to linkage-editor. NOOBJECT is
the default.

OBJECT replaces the OS/VS COBOL
LOAD option.

OFFSET X X X X

Produces a condensed PROCEDURE
DIVISION listing plus tables and
program statistics. NOOFFSET is the
default.

OFFSET replaces the OS/VS COBOL
CLIST option.

OPTFILE X X

Specifies that compiler options should
be read from a separate data set or file
specified by a SYSOPTF DD statement.
OPTFILE is not in effect by default.

OPTIMIZE X X X X X

Optimizes the object program.

With IBM COBOL and Enterprise
COBOL prior to V5, OPTIMIZE had
the suboptions of (STD/FULL). The
default was NOOPTIMIZE.

In Enterprise COBOL V5, OPTIMIZE
has the suboptions of (0 / 1 / 2). The
OPTIMIZE option specifies increasing
levels of optimization to improve
application runtime performance.

OPTIMIZE(0) is the default.

OUTDD(SYSOUT)
OUTDD(ddname)

X X X X

Routes DISPLAY output to SYSOUT or
to a specified data set.
OUTDD(SYSOUT) is the default.

OUTDD replaces the OS/VS COBOL
SYSx option.

274 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

PGMNAME X X X

Controls the handling of program
names in relation to length and case.

PGMNAME(LONGMIXED)
Program names are used at
their full length, without
truncation and without
folding or translating by the
compiler.

PGMNAME(LONGUPPER)
Program names are used at
their full length, without
truncation.

PGMNAME(COMPAT)
Program names are handled
in a manner compatible with
older versions of COBOL
compilers.

PGMNAME(COMPAT) is the default.

PMAP X

Produces a listing of assembler
language expansion of source code.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL LIST compiler
option replaces the OS/VS COBOL
PMAP option.

QUALIFY X

QUALIFY affects qualification rules
and controls whether to extend
qualification rules so that some data
items that cannot be referenced under
COBOL Standard rules can be
referenced.

QUOTE X X X X X

Specifies a quotation mark (") as the
delimiter for literals. QUOTE is the
default.

In Enterprise COBOL, literals can be
delimited with either quotes or
apostrophes regardless of whether
APOST or QUOTES is in effect. If
QUOTE is used, the figurative constant
QUOTE/QUOTES represents one or
more quotation marks (") characters.

RES X X

Causes most library routines to be
loaded dynamically, instead of being
link-edited with the COBOL program.
RES is the default behavior and is not
changeable.

RENT X X X X
Specifies reentrant code in object
program. RENT is the default.

Appendix E. Option comparison 275

||||||

|
|
|
|
|
|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

RMODE(AUTO)
RMODE(24)
RMODE(ANY)

X X X

Establishes the residency mode for the
generated object program. Programs
compiled with NORENT will have
RMODE(24). Programs compiled with
RENT will have RMODE(ANY).
RMODE(AUTO) is the default.

SEQ X

Checks ascending sequencing of source
statement line numbers.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL SEQUENCE option
replaces the OS/VS COBOL SEQ
option.

SEQUENCE X X X X

Checks ascending sequencing of source
statement line numbers. SEQUENCE is
the default.

SEQUENCE replaces the OS/VS
COBOL SEQ option.

SERVICE X

Use SERVICE to place a string in the
object module if the object module is
generated. If the object module is
linked into a program object, the string
is loaded into memory with this
program object. If the Language
Environment dump includes a
traceback, this string is included in
that traceback.

SIZE(MAX)
SIZE(nnnnn)
SIZE(nnnK)

X X X X*****
Specifies virtual storage to be used for
compilation.

SOURCE X X X X X
Produces a listing of the source
program and embedded messages.
SOURCE is the default.

SPACE X X X X X

Produces a single, double, or triple
spaced listing. The syntax of the
SPACE option in OS/VS COBOL is:
SPACE1, SPACE2, SPACE3. The syntax
of SPACE in VS COBOL II and
Enterprise COBOL is: SPACE(1),
SPACE(2), SPACE(3).

SPACE(1) is the default.

SQL X X X
Enables the DB2 coprocessor capability
and specifies DB2 suboptions. NOSQL
is the default.

SQLIMS X
Enables the IMS SQL coprocessor
capability and specifies IMS
suboptions. NOSQLIMS is the default.

276 Enterprise COBOL for z/OS, V5.2 Migration Guide

||||||

|
|
|
|
|
|
|
|
|

|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

SQLSSCID X X

Determines whether the CODEPAGE
compiler option influences the
processing of SQL statements in
COBOL programs. Has an effect only
when the integrated DB2 coprocessor
(SQL compiler option) is used.
NOSQLCCSID is the default.

SSRANGE X X X X

At run time, checks validity of
subscript, index, and reference
modification references.

In Enterprise COBOL V5.2, with the
PTF for APAR PI53044 installed, new
suboptions ZLEN and NOZLEN are
added to control how the compiler
checks reference modification lengths.

In Enterprise COBOL V5.2, with the
PTF for APAR PI86343 installed, new
suboptions MSG and ABD are added
to control the runtime behavior of the
COBOL program when a range check
fails.

NOSSRANGE is the default.

STGOPT X
Controls storage optimization.
NOSTGOPT is the default.

SYSx X

Routes DISPLAY output to SYSOUT or
to a specified data set.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL OUTDD option
replaces the OS/VS COBOL SYSx
option.

STATE X

Produces a dump with debugging
information when an application ends
with an abend.

The IBM Enterprise COBOL TEST
option replaces the OS/VS COBOL
STATE option.

SUPMAP
SYNTAX
CSYNTAX

X

Specifies the extent of compilation.
SYNTAX specifies unconditional
syntax checking. CSYNTAX and
CSUPMAP specify conditional syntax
checking. NOSYNTAX and
NOCSYNTAX specify an unconditional
full compile.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL COMPILE option
replaces the OS/VS COBOL SYNTAX,
CSYNTAX, and CSUPMAP options.

Appendix E. Option comparison 277

|
|
|
|
|

|
|
|
|
|
|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

SYMDMP X

Produces a symbolic dump.

ABEND dumps and dynamic dumps
are available through Language
Environment services. Symbolic dumps
are available by using the TEST
compiler option.

SXREF X

Produces sorted cross-reference listing
of data names and procedure names
used in program.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL XREF option
replaces the OS/VS COBOL SXREF
option.

TERM X

Sends progress messages to the
SYSTERM data set.

The VS COBOL II, IBM COBOL, and
Enterprise COBOL TERMINAL option
replaces the OS/VS COBOL TERM
option.

TERMINAL X X X X

Sends progress messages to the
SYSTERM data set. NOTERMINAL is
the default.

TERMINAL replaces the OS/VS
COBOL TERM option.

TEST X X X X X

Produces object code usable by Debug
Tool for the product.
NOTEST(NODWARF) is the default.

For details about the suboptions for
the Enterprise COBOL TEST option,
see the Enterprise COBOL Programming
Guide.

THREAD X X

Enables a COBOL program for
execution in a run unit with multiple
POSIX threads or PL/I tasks.
NOTHREAD is the default.

278 Enterprise COBOL for z/OS, V5.2 Migration Guide

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

TRUNC X X X X X

Truncates final intermediate results.
OS/VS COBOL has the TRUNC and
NOTRUNC options (NOTRUNC is the
default). VS COBOL II, IBM COBOL,
and Enterprise COBOL have the
TRUNC(STD|OPT|BIN) option.

TRUNC(STD)
Truncates numeric fields according
to PICTURE specification of the
binary receiving field

TRUNC(OPT)
Truncates numeric fields in the
most optimal way

TRUNC(BIN)
Truncates binary fields based on
the storage they occupy

TRUNC(STD) is the default.

For a complete description, see the
Enterprise COBOL Programming Guide.

TYPECHK X

Enforces the rules for OO type
conformance and issues diagnostics for
any violations.

NOTYPECHK is the default.

VBREF

VBSUM
X

X X X X
Produces a cross-reference listing of all
verb types used in program. Only
OS/VS COBOL supports VBSUM.

NOVBREF is the default.

VLR X******

Affects the file status returned from
READ statements for variable-length
records when the length of record
returned is inconsistent with the record
descriptions.

VSAMOPENFS X*******

Affects the user file status reported
from successful VSAM OPEN
statements that require verified file
integrity check.

WORD X X X X

Tells the compiler which reserved
word table to use. To use an
installation-specific reserved word
table, specify WORD(table-name). To
use the default reserved word table,
specify NOWORD.

NOWORD is the default.

Appendix E. Option comparison 279

||||||

|
|
|
|
|

||||||

|
|
|
|

Table 43. Option comparison (continued)

Option

Available in

Usage notesOS/VS VS II
IBM

COBOL

Enterprise
COBOL V3

and V4
Enterprise

COBOL V5

XMLPARSE X*** X******

For Enterprise COBOL Version 4 and
later only (available in Enterprise
COBOL Version 5.1 via service). Selects
which XML parser is to be used, either
the z/OS XML System Services parser
(XMLSS) or the COBOL high-speed
parser that was used in Enterprise
COBOL Version 3. The default is
XMLPARSE(XMLSS).

XREF X X X X

Produces a sorted cross-reference
listing of data names and procedure
names used in program. The default is
XREF.

XREF replaces the OS/VS COBOL
SXREF option.

YEARWINDOW X X

Specifies the first year of the 100-year
window (the century window) to be
applied to windowed date field
processing by the COBOL compiler.
YEARWINDOW(1900) is the default.

ZONECHECK X******

Tells the compiler to generate IF
NUMERIC class tests for zoned decimal
data items that are used as sending
data items.

In Enterprise COBOL V5.2 with PTF
for APAR PI81006 installed,
ZONECHECK is deprecated but is
tolerated for compatibility. Consider
using NUMCHECK(ZON) instead. For
details, see NUMCHECK in the
Enterprise COBOL Programming Guide.

ZONEDATA X******

Tells the compiler whether data in
USAGE DISPLAY and PACKED-DECIMAL
data items is valid, and if not, what
the behavior of the compiler should be.

ZWB X X X X X

Removes the sign from a signed
numeric DISPLAY field when
comparing it with an alphanumeric
field. ZWB is the default.

v X* Available only in COBOL for OS/390 & VM, Version 2 Release 2

v X** Available only in COBOL for OS/390 & VM, Version 2 Release 1 and 2

v X*** Available only in Enterprise COBOL Version 4 Release 1 and 2

v X**** Available only in Enterprise COBOL Version 4 Release 2

v X***** SIZE(MAX) is not supported in Enterprise COBOL Version 5 Release 1. The SIZE option is not supported in
Enterprise COBOL Version 5 Release 2

v X****** Available in Enterprise COBOL Version 5 Release 2 at base level, or available in both V5.1 and V5.2 with
service applied

v X******* Available in Enterprise COBOL Version 5 Release 2 with service applied

280 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|
|
|
|
|
|
|

||||||

|
|
|
|

|
|
|
|
|
|
|

||||||

|
|
|
|

|
|

|

Appendix F. Compiler limit comparison

The following table lists the compiler limits for Enterprise COBOL V5, other
Enterprise COBOL versions, IBM COBOL, VS COBOL II, and OS/VS COBOL
programs.

These are guidelines to the limits in the table:
v Interpret a limit stated in megabytes (MB) as: x megabytes minus 1-B.
v Interpret a limit stated in kilobytes (KB) as: x kilobytes minus 1-B.
v Interpret a limit stated in gigabytes (GB) as: x gigabytes minus 1-B.
v B stands for bytes.
v N/L stands for no limit.
v Footnotes are at the end of the table.

Language element
Enterprise COBOL
V5

Other
Enterprise
COBOL
versions

IBM COBOL and
VS COBOL II

OS/VS
COBOL

Size of program 999,999 lines 999,999 lines 999,999 lines 999,999 lines

Number of literals 4,194,303-B1 4,194,303-B1 4,194,303-B1 16,384-B

Total length of literals 4,194,303-B1 4,194,303-B1 4,194,303-B1 32,767-B after
OPT

Reserved word table entries 1536 1536 1536 N/L

COPY REPLACING . . . BY . . . (items
per COPY statement)

N/L N/L N/L 150

Number of COPY libraries N/L N/L N/L N/L

Block size of COPY library 32,760-B 32,767-B 32,767-B 16,384-B

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES paragraph

mnemonic-name IS 18 18 18 18

UPSI-n . . . (switches) 0-7 0-7 0-7 0-7

alphabet-name IS . . . N/L N/L N/L N/L

literal THRU . . . or ALSO . . . 256 256 256 256

INPUT-OUPUT SECTION

FILE-CONTROL paragraph

SELECT file-name . . . A maximum of
65,535 file names
can be assigned
external names

A maximum of
65,535 file
names can be
assigned
external names

A maximum of
65,535 file names
can be assigned
external names

A maximum of
65,535 file
names can be
assigned
external names

ASSIGN system-name . . . N/L N/L N/L N/L

ALTERNATE RECORD KEY data-name
. . .

253 253 253 253

© Copyright IBM Corp. 1991, 2019 281

Language element
Enterprise COBOL
V5

Other
Enterprise
COBOL
versions

IBM COBOL and
VS COBOL II

OS/VS
COBOL

RECORD KEY length N/L2 N/L2 N/L2 255

RESERVE integer (buffers) 2553 2553 2553 2553

I-O-CONTROL paragraph

RERUN ON system-name . . . 32,767 32,767 32,767 32,767

RERUN integer RECORDS 16,777,215 16,777,215 16,777,215 16,777,215

SAME RECORD AREA 255 255 255 255

SAME RECORD AREA FOR file-name .
. .

255 255 255 255

SAME SORT/MERGE AREA N/L4 N/L4 N/L4 N/L4

MULTIPLE FILE file-name . . . N/L4 N/L4 N/L4 N/L4

DATA DIVISION

77 data item size 999,999,999 134,217,727 16,777,215 1,048,576

Total 01 + 77 (data items) N/L N/L N/L 255

88 condition-names . . . N/L N/L N/L N/L

66 RENAMES . . . N/L N/L N/L N/L

PICTURE clause, number of characters
in character-string

50 50 30 30

PICTURE clause, numeric item digit
positions

With
ARITH(COMPAT):
18

With
ARITH(EXTEND):
31

18 (or 31)6 For IBM COBOL:
18 (or 31)6

For VS COBOL II:
18

18

PICTURE clause, numeric-edited
character positions

249 249 249 127

PICTURE symbol replication () 999,999,999 134,217,727 16,777,215 99,999

PICTURE symbol replication (), class
DBCS items

499,999,999 67,108,863 8,388,607 N/A

PICTURE symbol replication (), class
national items

499,999,999 67,108,863 N/A N/A

PICTURE symbol replication (editing) 32,767 32,767 32,767 99,999

Elementary item size 134,217,727 134,217,727 16,777,215 32,767

OCCURS integer 999,999,999 134,217,727 4,194,303 65,535

Table size 999,999,999 134,217,727 8,388,607 32,767

ASC or DES KEY . . . (per OCCURS
clause)

12 12 12 12

Total length of keys (per OCCURS
clause)

256B 256B 256B 256B

INDEXED BY . . . (index names by
OCCURS clause)

12 12 12 12

Total number of indexes (index
names) per class or program

65,535 65,535 65,535 65,535

282 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

Language element
Enterprise COBOL
V5

Other
Enterprise
COBOL
versions

IBM COBOL and
VS COBOL II

OS/VS
COBOL

Size of relative index 32,765 32,765 32,765 32,765

FILE SECTION

FD record description entry 1,048,575 1,048,575 1,048,575 1,048,575

FD file-name . . . 65,535 65,535 65,535 65,535

LABEL data-name . . . (if no optional
clauses)

255 255 255 185

Label record length 80-B 80-B 80-B 80-B

DATA RECORD data-name . . . N/L4 N/L4 N/L4 N/L4

BLOCK CONTAINS integer 2,147,483,6479 2,147,483,6479 For IBM COBOL:
2,147,483,647
For VS COBOL II:
1,048,5755

32,760

RECORD CONTAINS integer 1,048,5755 1,048,5755 1,048,5755 32760

SD file-name . . . 65,535 65,535 65,535 65,535

DATA RECORD data-name . . . N/L4 N/L4 N/L4 N/L4

WORKING-STORAGE SECTION

Total size of items without the
EXTERNAL attribute

2,147,483,646-B 134,217,727-B 134,217,727-B 1,048,576

Total size of items with the
EXTERNAL attribute

2,147,483,646-B 134,217,727-B 134,217,727-B N/A

LINKAGE SECTION

Total size N/L 134,213,631-B 134,217,727-B 1,048,576

PROCEDURE DIVISION

Procedure and constant area 4,194,3031 4,194,3031 4,194,3031 1M+32-KB

PROCEDURE DIVISION USING
identifier . . .

32,767 32,767 32,767 N/L

Procedure-names 1,048,5751 1,048,5751 1,048,5751 64-KB1

Verbs per line (FDUMP/TEST) 7 7 7 7

Subscripted data-names per verb 32,767 32,767 32,767 511

ADD identifier . . . N/L N/L N/L N/L

ALTER procedure-name 1 TO
procedure-name 2 . . .

4,194,3031 4,194,3031 4,194,3031 64-KB1

CALL . . . BY CONTENT identifier 2,147,483,647 2,147,483,647 2,147,483,647 N/A

CALL literal . . . 4,194,3031 4,194,3031 4,194,3031 N/L

CALL identifier or literal USING
identifier or literal . . .

16,380 16,380 16,380 N/L

Active programs in run unit 32,767 32,767 32,767 32,767

Number of names called (DYN
option)

N/L N/L N/L 64-K

CANCEL identifier or literal . . . N/L N/L N/L N/L

CLOSE file-name . . . N/L N/L N/L N/L

COMPUTE identifier . . . N/L N/L N/L N/L

Appendix F. Compiler limit comparison 283

|

|

|

Language element
Enterprise COBOL
V5

Other
Enterprise
COBOL
versions

IBM COBOL and
VS COBOL II

OS/VS
COBOL

DISPLAY identifier or literal . . . N/L N/L N/L N/L

DIVIDE identifier . . . N/L N/L N/L N/L

ENTRY USING identifier or literal . . . N/L N/L N/L N/L

EVALUATE . . . subjects 64 64 64 N/L

EVALUATE . . . WHEN clauses 256 256 256 N/L

GO procedure-name . . . DEPENDING 255 255 255 2031

INSPECT TALLYING and
REPLACING clauses

N/L N/L N/L 15

MERGE file-name ASC or DES KEY . .
.

N/L N/L N/L 12

Total merge key length 4092-B7 4092-B7 4092-B7 256-B

MERGE USING file-name . . . 168 168 168 168

MOVE identifier or literal TO literal . . . N/L N/L N/L N/L

MULTIPLY identifier . . . N/L N/L N/L N/L

OPEN file-name . . . N/L N/L N/L N/L

PERFORM 4,194,303 4,194,303 4,194,303 64-K

SEARCH . . . WHEN . . . N/L N/L N/L N/L

SET index or identifier . . . TO N/L N/L N/L N/L

SET index . . . UP or DOWN N/L N/L N/L N/L

SORT file-name ASC or DES KEY N/L N/L N/L 12

Total sort key length 4092-B7 4092-B7 4092-B7 256-B

SORT USING file-name . . . 168 168 168 168

STRING identifier . . . N/L N/L N/L N/L

STRING DELIMITED identifier or
literal . . .

N/L N/L N/L N/L

UNSTRING DELIMITED identifier or
literal . . .

N/L 255 255 15

UNSTRING INTO identifier or literal . .
.

N/L N/L N/L N/L

USE . . . ON file-name . . . N/L N/L N/L N/L

1. Items included in limit for procedure plus constant area.

2. No compiler limit, but VSAM limits it to 255 bytes.

3. QSAM limit.

4. Syntax checked, but has no effect on the execution of the program; there is no limit.

5. The compiler limit is shown, but QSAM limits it to 32,767 bytes.

6. For COBOL for OS/390 & VM V2R2 and later versions, 18 if ARITH(COMPAT) is in effect, or 31 if
ARITH(EXTEND) is in effect.

7. For QSAM and VSAM, the limit is 4088 bytes if EQUALS is coded on the OPTION control statement.

8. SORT limit for QSAM and VSAM.

9. Requires large block interface (LBI) support provided by OS/390 DFSMS Version 2 Release 10.0 or later. On
OS/390 systems with earlier releases of DFSMS, the limit is 32,767 bytes. For more information about using large
block sizes, see the Enterprise COBOL Programming Guide.

284 Enterprise COBOL for z/OS, V5.2 Migration Guide

Appendix G. Preventing file status 39 for QSAM files

To prevent file-status 39 for a QSAM file, ensure that there are no mismatches
between the description of the file in your program and the attributes defined for
the data set.

Processing existing files
When your program processes an existing file, code the description of the file in
your COBOL program to be consistent with the file attributes of the data set, for
example:

File format Requirement

Format-V files or
Format-S files

The maximum record length specified in your program must be exactly
4 bytes smaller than the length attribute of the data set.

Format-F files
The record length specified in your program must exactly match the
length attribute of the data set.

Format-U files
The maximum record length specified in your program must exactly
match the length attribute of the data set.

Remember: Information in the JCL overrides information in the data set label.

For details about how record lengths are determined from the FD entry and record
descriptions in your program, see the Enterprise COBOL Programming Guide.

Defining variable-length records
The easiest way to define variable-length records in your program is to use
RECORD IS VARYING FROM integer-1 TO integer-2 in the FD entry and specify
an appropriate value for integer-2. For example, assume that you have determined
the length attribute of the data set to be 104 (LRECL=104). Keeping in mind that
the maximum record length is determined from the RECORD IS VARYING clause
(in which values are specified) and not from the level-01 record descriptions, you
could define a format-V file in your program with this code:

FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS V
RECORD IS VARYING FROM 4 TO 100 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(4).
01 COMMUTER-RECORD-B PIC X(75).

Assume that the existing file in the previous example was format-U instead of
format-V. If the 104 bytes are all user data, you could define the file in your
program with this code:

FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS U
RECORD IS VARYING FROM 4 TO 104 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(4).
01 COMMUTER-RECORD-B PIC X(75).

© Copyright IBM Corp. 1991, 2019 285

Defining fixed-length records
To define fixed-length records in your program, use either the RECORD
CONTAINS integer clause, or omit this clause and specify all level-01 record
descriptions to be the same fixed size. In either case, use a value that equals the
value of the length attribute of the data set. When you intend to use the same
program to process different files at execution and the files have differing
fixed-length record lengths, the recommended way to avoid record-length conflicts
is to code RECORD CONTAINS 0.

If the existing file is an ASCII data set (DCB=(OPTCD=Q)), you must specify the
CODE-SET clause in the program's FD entry for the file.

Converting existing files that do not match the COBOL record
You can re-allocate a new file with the matching LRECL, copy the data from an
existing file to the new file, then use the new file as input.

Processing new files
If your COBOL program will write records to a new file which is made available
before the program is run, ensure that the file attributes you specify in the DD
statement or the allocation do not conflict with the attributes you have specified in
your program. In most cases, you only need to specify a minimum of parameters
when predefining your files, as illustrated in the following example of a DD
statement related to the FILE-CONTROL and FD entries in your program:

Where:

▌1▐ The ddname in the DD statement corresponds to the assignment-name in the
ASSIGN clause:
//OUTFILE DD DSNAME=OUT171 ...

JCL DD Statement:

▌1▐
//OUTFILE DD DSNAME=OUT171,UNIT=SYSDA,SPACE=(TRK,(50,5)),
// DCB=(BLKSIZE=400)

/*

Enterprise COBOL Program Code:

ENVIRONMENT DIVISION.
INPUT─OUTPUT SECTION.

FILE─CONTROL.
SELECT CARPOOL ▌2▐

ASSIGN TO OUTFILE ▌1▐
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL.

.

.

.
DATA DIVISION.

FILE SECTION.
FD CARPOOL ▌2▐

LABEL RECORD STANDARD
BLOCK CONTAINS 0 CHARACTERS
RECORD CONTAINS 80 CHARACTERS

Figure 6. Example of JCL, FILE-CONTROL entry, and FD entry

286 Enterprise COBOL for z/OS, V5.2 Migration Guide

This assignment-name points to the ddname of OUTFILE in the DD
statement.
ASSIGN TO OUTFILE

▌2▐ When you specify a file in your COBOL FILE-CONTROL entry, the file
must be described in an FD entry for file-name.
SELECT CARPOOL

FD CARPOOL

If you do need to explicitly specify a length attribute for the data set (for example,
you are using an ISPF allocation panel or if your DD statement is for a batch job in
which the program uses RECORD CONTAINS 0), use the following rules:
v For format-V and format-S files, specify a length attribute that is 4 bytes larger

than what is defined in the program.
v For format-F and format-U files, specify a length attribute that is the same as

what is defined in the program.
v If you open your file as OUTPUT and write it to a printer, the compiler might

add one byte to the record length to account for the carriage control character,
depending on the ADV compiler option and the COBOL language used in your
program. In such a case, take the added byte into account when specifying the
LRECL.

For example, if your program contains the following code for a file with
variable-length records:

FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS V
RECORD VARYING 10 TO 50 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(10).
01 COMMUTER-RECORD-B PIC X(50).

The LRECL in your DD statement or allocation should be 54.

Processing files dynamically created by COBOL

Note: This topic is for QSAM files only.
Enterprise COBOL dynamically allocates a file when all of the following conditions
exist:
v The CBLQDA(ON) runtime option is in effect.
v A ddname for the file is not explicitly allocated.
v An environment variable of the same name is not set.
v The COBOL program opens the file to write to it.

When the file is opened, the attributes specified in your program will be used.

If CBLQDA(OFF) is in effect, an error will be generated.

Appendix G. Preventing file status 39 for QSAM files 287

288 Enterprise COBOL for z/OS, V5.2 Migration Guide

Appendix H. Overriding binder (linkage-editor) defaults

AMODE and RMODE

You might need to override the Enterprise COBOL default settings for AMODE
and RMODE depending on the settings of the RENT and RMODE compiler
options.

Do not override AMODE or RMODE assigned by the compiler, in particular:
v Do not change the RMODE of Enterprise COBOL Version 5 NORENT programs

to RMODE ANY.
v Do not change the AMODE of Enterprise COBOL Version 5.1.0 programs to

AMODE 24. You can change the AMODE of Enterprise COBOL Version 5.1.1
and Version 5.2.0 programs to AMODE 24.

If a program object gets assigned AMODE 24 after binding, then it must also have
RMODE 24. You cannot specify the binder option RMODE(ANY).

RENT

If you compile with the RENT compiler option, you must tell the binder that a
module is RENT with REUS=RENT or the alternative RENT option (RENT
includes REUS, so REUS is not necessary). The attribute RENT is not set in the
program object by the compiler, unlike AMODE and RMODE.

How to override the defaults
To override the defaults, specify AMODE or RMODE using one of the mechanisms
described below.
v EXEC statement of your link-edit job step, where programname refers to the

program binder (linkage-editor), such as IEWBLINK, IEWL or HEWL:
//LKED EXEC PGM=programname,
// PARM=’AMODE=xx,RMODE=yy’

v The linkage-editor MODE control statements:
MODE AMODE(xx),RMODE(yy)

v One of the following TSO commands LINK or LOADGO:
LINK(dsn-list)
AMODE(xx) RMODE(yy)
LOADGO(dsn-list) AMODE(xx) RMODE(yy)

For more information about allowable xx and yy and binder MODE control
statements, see your MVS Program Management: User's Guide and Reference.

The loader that uses information set by the binder uses a program's AMODE
attribute to determine whether a program invoked using ATTACH, LINK, XCTL,
or LOAD/BASSM is to receive control in 24-bit or 31-bit addressing mode. The
loader uses the RMODE attribute to determine whether a program must be loaded
into virtual storage below 16 MB, or can reside anywhere in virtual storage (above
or below 16 MB).

© Copyright IBM Corp. 1991, 2019 289

|

|

|

|
|
|

|

|
|

|
|
|

|
|

|

|
|
|
|

|
|

|
|

|
|

|
|

|

|

|

|
|
|

|
|

|
|
|
|
|
|

290 Enterprise COBOL for z/OS, V5.2 Migration Guide

Appendix I. TSO considerations

This appendix describes conversion considerations for programs running on TSO.
It includes information about using REXX execs.

Using REXX execs
When you run a COBOL program from a REXX exec, you need to be aware of the
differences in the parameter list formats for using the different "address" options.
When you use 'Address TSO' (the default) or 'Address ATTCHMVS', both program
parameters and Language Environment runtime options are processed. When
using 'Address LINKMVS', runtime options are not processed, but they are passed
as program parameters to the COBOL program.

Due to the differences in parameter list formats and save area conventions,
'Address LINK', 'Address ATTACH', 'Address LINKPGM', and 'Address
ATTCHPGM' are not supported.

© Copyright IBM Corp. 1991, 2019 291

292 Enterprise COBOL for z/OS, V5.2 Migration Guide

Appendix J. z/OS UNIX considerations

A z/OS change can affect use of the COBOL compiler, if you are using it under
z/OS UNIX or with zFS files for compiler input or output and moving from z/OS
V1.13 to z/OS V2.1 or later.

Default OMVS segments are no longer supported for z/OS UNIX starting with
z/OS V2R1.

As of z/OS V2R1, the ability to use default OMVS segments is removed. All z/OS
UNIX users or groups must define OMVS segments for user and group profiles
with unique user IDs (UIDs) and group IDs (GIDs). One solution is to use RACF
support to automatically generate unique UIDs and GIDs on demand for users and
groups that do not define OMVS segments. Support for automatic unique UID and
GID generation is available since z/OS V1R11.

All Enterprise COBOL users who invoke the compiler on z/OS UNIX via the cob2
interface might be affected. Users who invoke the compiler in batch mode might
also be affected if any input or output files reside on a z/OS UNIX file system. See
the z/OS V2R1 Migration guide for further details.

The following example shows the error that you encounter if you do not define an
OMVS segment when you attempt to access an OMVS resource:
16.26.26 JOB00126 $HASP373 T1F11010 STARTED - INIT 8 - CLASS A - SYS
16.26.27 JOB00126 SMF000I T1F11010 PC DSNHPC 0004
16.26.27 JOB00126 ICH408I USER(USRT011) GROUP(SYS1) NAME(#################

465 CL(PROCESS)
465 OMVS SEGMENT NOT DEFINED

16.26.27 JOB00126 +CEE3798I ATTEMPTING TO TAKE A DUMP FOR ABEND U4093 TO DATA S

© Copyright IBM Corp. 1991, 2019 293

|

|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

http://publibz.boulder.ibm.com/epubs/pdf/e0z3m102.pdf

294 Enterprise COBOL for z/OS, V5.2 Migration Guide

Appendix K. Accessing JCL parameters

You can pass a parameter string from JCL to a COBOL program using the PARM=
keyword of the EXEC statement. You can access these parameters either by
standard COBOL coding, or by calling the CEE3PR2 Language Environment
callable service.

Using COBOL coding

You must define the LINKAGE SECTION record (level-01) that is to receive the
user_parameter data passed by the PARM string, taking into account the halfword
length field that is inserted in front of the string by the system.

The program can test this field length for nonzero to verify that PARM-string data
has in fact been passed. For example:
LINKAGE SECTION.
01 PARMDATA.

05 STRINGLEN PIC 9(4) USAGE COMP.
05 STRINGPARM PIC X(80).

PROCEDURE DIVISION USING PARMDATA.
IF STRINGLEN > 0 . . .

For more information, see Coding the LINKAGE SECTION in the Enterprise
COBOL Programming Guide.

Using CEE3PR2

You must define parameters to the CEE3PR2 callable service, without the need to
add parameters to your PROCEDURE DIVISION USING statement.
WORKING-STORAGE SECTION.
01 PARMLEN PIC S9(9) BINARY.
01 PARMSTR.

02 STR1-LENGTH PIC S9(4) BINARY.
02 STR1-STRING.

03 STR1-CHAR PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON STR1-LENGTH.

. . .
CALL "CEE3PR2" USING PARMLEN,PARMSTR, FC.

For more information about the CEE3PR2 callable service, see CEE3PR2 in the
Language Environment Programming Reference.

© Copyright IBM Corp. 1991, 2019 295

http://publibz.boulder.ibm.com/epubs/pdf/ceea31c0.pdf

296 Enterprise COBOL for z/OS, V5.2 Migration Guide

Appendix L. Migrating from XMLPARSE(COMPAT) to
XMLPARSE(XMLSS)

You can migrate your programs to useXMLPARSE(XMLSS) after you understand
the differences between XMLPARSE settings: XMLSS and COMPAT. Some of these
differences are described in terms of new, changed, unchanged, and discontinued
events when XMLPARSE(XMLSS) is in effect.
v ATTRIBUTE-CHARACTER event (discontinued)

– XMLSS: The ATTRIBUTE-CHARACTER event no longer occurs. All entity
references, including predefined ones, are now included in the
ATTRIBUTE-CHARACTERS event, unless there is an unresolved entity
reference, in which case an EXCEPTION event is signaled.

– COMPAT: The ATTRIBUTE-CHARACTER event occurs for predefined entity
references only. The five predefined entity references are shown in Table 44 on
page 304. XML-TEXT or XML-NTEXT contains the single character that
corresponds with the predefined entity reference in the attribute value.
Character references are signaled as ATTRIBUTE-NATIONAL-CHARACTER
events.

– To migrate to XMLPARSE(XMLSS): Remove references to the
ATTRIBUTE-CHARACTER event and integrate any actions for this event into
your ATTRIBUTE-CHARACTERS event handling.

v ATTRIBUTE-CHARACTERS event (changed)

– XMLSS: XML-TEXT or XML-NTEXT could have a substring of the value for
the ATTRIBUTE-CHARACTERS event. XML-TEXT or XML-NTEXT could also
contain a complete string of the value even if the value contains a character
reference or an entity reference.

– COMPAT: XML-TEXT or XML-NTEXT has only a substring of the value for
the ATTRIBUTE-CHARACTERS event when the value contains a character
reference or an entity reference.

– To migrate to XMLPARSE(XMLSS): You might have to modify your code
that handles the ATTRIBUTE-CHARACTERS event to handle more than one
event even if your attribute values do not contain character or entity
references. You might also have to change your code to process
ATTRIBUTE-CHARACTERS as a single event where your code was handling
ATTRIBUTE-CHARACTERS as multiple events.

v ATTRIBUTE-NAME event (changed)

– XMLSS: For attribute names that are not in a namespace, XML-TEXT or
XML-NTEXT contains the attribute name, and the namespace special registers
are all empty and have length zero. Attributes with names in a namespace are
always prefixed and have the form:
prefix:local-part = AttValue

XML-TEXT or XML-NTEXT contains the local-part, XML-NAMESPACE or
XML-NNAMESPACE contains the namespace and XML-NAMESPACE-
PREFIX or XML-NNAMESPACE-PREFIX contains the prefix.

– COMPAT: For all attribute names, XML-TEXT or XML-NTEXT contains the
complete attribute name, even if the name is prefixed (indicating that the
name belongs to a namespace).

– To migrate to XMLPARSE(XMLSS): Either change your code to process the
separate parts of the namespace, or change your code to reconstruct the

© Copyright IBM Corp. 1991, 2019 297

|

|

|

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|

|

|
|
|

|
|
|

|
|

complete attribute name from the separate parts in XML-TEXT,
XML-NAMESPACE-PREFIX, and XML-NAMESPACE, or XML-NTEXT,
XML-NNAMESPACE-PREFIX, and XML-NNAMESPACE.

v ATTRIBUTE-NATIONAL-CHARACTER event (changed)

– XMLSS: Character references that can be represented in the EBCDIC encoding
of the XML document are resolved and included in the ATTRIBUTE-
CHARACTERS event.
Unrepresentable character references are expressed as ATTRIBUTE-
NATIONAL-CHARACTER events, as for COMPAT.

– COMPAT: Regardless of the type of the XML document specified by
identifier-1 in the XML PARSE statement, XML-TEXT is empty and
XML-NTEXT contains the single national character corresponding with the
(numeric) character reference.

– To migrate to XMLPARSE(XMLSS): Possibly no change will be required, but
be aware that with COMPAT, the national character might have an EBCDIC
equivalent, whereas with XMLSS, the national character is known to have no
representation in the EBCDIC encoding of the document.

v COMMENT event (changed)

– XMLSS: XML-TEXT or XML-NTEXT could have a substring of the value for
the COMMENT event.

– COMPAT: XML-TEXT or XML-NTEXT always has the complete string of the
value for the COMMENT event.

– To migrate to XMLPARSE(XMLSS): You might have to modify your code
that handles the COMMENT event to handle more than one event if you get
a substring of the COMMENT value in XML-TEXT or XML-NTEXT. If that is
the case, you get two or more COMMENT events in succession and you
would concatenate strings together to re-create the complete string of the
value. You cannot distinguish a comment that is split in this way from a
sequence of distinct comments.

v CONTENT-CHARACTER event (discontinued)

– XMLSS: The CONTENT-CHARACTER event no longer occurs. All entity
references, including predefined ones, are now included in the
CONTENT-CHARACTERS event unless there is an unresolved entity
reference, in which case an UNRESOLVED-REFERENCE event or an
EXCEPTION event is signaled.

– COMPAT: The CONTENT-CHARACTER event occurs for predefined entity
references only. The five predefined entity references are shown in Table 44 on
page 304. XML-TEXT or XML-NTEXT contains the single character that
corresponds with the predefined entity reference in the attribute value.
Character references are signaled as CONTENT-NATIONAL-CHARACTER
events.

– To migrate to XMLPARSE(XMLSS): Remove references to the
CONTENT-CHARACTER event and integrate any actions for this event into
your CONTENT-CHARACTERS event handling.

v CONTENT-CHARACTERS event (changed)

– XMLSS: XML-TEXT or XML-NTEXT could have a substring of the content for
the CONTENT-CHARACTERS event. XML-TEXT or XML-NTEXT could also
contain a complete string of the content even if the content contains a
character reference or an entity reference.

– COMPAT: XML-TEXT or XML-NTEXT has only a substring of the content for
the CONTENT-CHARACTERS event when the content contains a character
reference or an entity reference.

298 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|

|

|
|
|

|
|

|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

– To migrate to XMLPARSE(XMLSS): You might have to modify your code
that handles the CONTENT-CHARACTERS event to handle more than one
event even if your attribute values do not contain character or entity
references. You might also have to change your code to process
CONTENT-CHARACTERS as a single event where your code was handling
CONTENT-CHARACTERS as multiple events.

v CONTENT-NATIONAL-CHARACTER event (changed)

– XMLSS: Character references that can be represented in the EBCDIC encoding
of the XML document are resolved and included in the CONTENT-
CHARACTERS event.
Unrepresentable character references are expressed as CONTENT-
NATIONAL-CHARACTER events, as for COMPAT.

– COMPAT: Regardless of the type of the XML document specified by
identifier-1 in the XML PARSE statement, XML-TEXT is empty, and
XML-NTEXT contains the single national character corresponding with the
(numeric) character reference.

– To migrate to XMLPARSE(XMLSS): Possibly no change will be required, but
be aware that with COMPAT, the national character might have an EBCDIC
equivalent, whereas with XMLSS, the national character is known to have no
representation in the EBCDIC encoding of the document.

Note: The XML System Services parser transforms the following characters or
character combinations to x'15' when parsing EBCDIC documents:

x'0D' CR

x'15' NL

x'25' LF

x'0D15' (these two bytes together)

x'0D25' (these two bytes together)

Some of these characters might be produced when an in-memory image of an
ASCII document is translated to EBCDIC. The COMPAT parser does none of
these transforms. An application which depends on them not being done will
need appropriate changes when using XMLPARSE(XMLSS).

v DOCUMENT-TYPE-DECLARATION event (changed)

– XMLSS: XML-TEXT or XML-NTEXT contains the name of the root element,
as specified in the document type declaration. The parser processes entity
declarations and default attribute values in the internal DTD subset, and
ignores the rest of the text in the document type declaration.

– COMPAT: XML-TEXT or XML-NTEXT contains the entire document type
declaration.

– To migrate to XMLPARSE(XMLSS): If having the whole document type
declaration is important, you might have to modify your code that handles
the DOCUMENT-TYPE-DECLARATION event to acquire the information
directly from your XML document.

v ENCODING-DECLARATION event (changed)

– XMLSS: XML-TEXT or XML-NTEXT contains the encoding name. The
encoding declaration is not used by the parser, so you might get incorrect

Appendix L. Migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS) 299

|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

||

|

|

|

|

|

|
|

|
|
|
|

|

|
|
|
|

|
|

|
|
|
|

|

|
|

characters passed through that would cause the parser to signal an
EXCEPTION event from which you can't recover.

– COMPAT: XML-TEXT or XML-NTEXT contains the encoding name. If there
are errors in the encoding of the document, you would get an EXCEPTION
event from which you might be able to recover and continue.

– To migrate to XMLPARSE(XMLSS): Check your document before parsing or
specify your encoding using the CODEPAGE compiler option or by using the
WITH ENCODING phrase on the XML PARSE statement.

v END-OF-CDATA-SECTION event (changed)

– XMLSS: All XML special registers except XML-EVENT, XML-CODE and
XML-INFORMATION are empty with length zero.

– COMPAT: XML-TEXT or XML-NTEXT always contains the string "]]>".
– To migrate to XMLPARSE(XMLSS): If the string "]]>" is acquired from the

END-OF-CDATA-SECTION event, change your code to manually return it
using a literal, or data item initialized with the value "]]>".

v END-OF-DOCUMENT event (no change)

– The 2 parsers have the same behavior for the END-OF-DOCUMENT event.
– To migrate to XMLPARSE(XMLSS): No change required.

v END-OF-ELEMENT event (changed)

– XMLSS: XML-TEXT or XML-NTEXT contains the local part of the end
element tag or empty element tag name. If the element name is in a
namespace, XML-NAMESPACE or XML-NNAMESPACE contains the
namespace, otherwise these special registers are empty with length zero. If
the element name is in a namespace and is prefixed (of the form
"prefix:local-part"), XML-NAMESPACE-PREFIX or XML-NNAMESPACE-
PREFIX contains the prefix, otherwise these special registers are empty with
length zero.

– COMPAT: XML-TEXT or XML-NTEXT contains the complete element tag
name, including any prefix. If the element name is not in a namespace, there
is no difference between COMPAT and XMLSS for END-OF-ELEMENT.

– To migrate to XMLPARSE(XMLSS): If the element name is not in a
namespace, then no change is required. If the element name is in a
namespace, change your code to not use the complete element name, or
reconstruct the complete element name from the separate parts in the XML
text and namespace special registers.

v END-OF-INPUT event (new)

– XMLSS: The END-OF-INPUT event indicates the end of a segment of an
XML document.

– COMPAT: The END-OF-INPUT event does not occur.
– To migrate to XMLPARSE(XMLSS): With COMPAT, your document is in one

segment, so no change is required to change to XMLSS.
v EXCEPTION event (changed)

– XMLSS: XML-CODE contains the unique return code and reason code
identifying the exception. See the following section "Other differences" for a
description of XML-CODE differences. XML-TEXT or XML-NTEXT contains
the document fragment up to the point of the error or anomaly that caused
the EXCEPTION event. All other XML special registers except XML-EVENT
and XML-INFORMATION are empty with length zero. It is not possible to
continue from any EXCEPTION event.

300 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|

|
|
|

|
|
|

|

|
|

|

|
|
|

|

|

|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|

|
|

|

|
|
|
|
|
|
|

– COMPAT: XML-TEXT or XML-NTEXT contains the entire document that has
been parsed up to the point of the EXCEPTION event. It is possible to
continue from some EXCEPTION events.

– To migrate to XMLPARSE(XMLSS): You might have to change your code or
documents if they depend on being able to recover from EXCEPTION events.

v NAMESPACE-DECLARATION event (new)

– XMLSS: XML-TEXT and XML-NTEXT are both empty with length zero.
XML-NAMESPACE or XML-NNAMESPACE contains the declared
namespace. If the namespace is "undeclared" by specifying the empty string,
XML-NAMESPACE and XML-NNAMESPACE are empty with length zero.
XML-NAMESPACE-PREFIX or XML-NNAMESPACE-PREFIX contains the
prefix if the attribute name for the namespace declaration is of the form
"xmlns:prefix", otherwise, if the declaration is for the default namespace and
the attribute name is "xmlns", XML-NAMESPACE-PREFIX and
XML-NNAMESPACE-PREFIX are both empty with length zero.

– COMPAT: The NAMESPACE-DECLARATION event does not occur.
– To migrate to XMLPARSE(XMLSS): If you get the NAMESPACE-

DECLARATION event after migrating to XMLSS, see the descriptions in this
table of ATTRIBUTE-NAME, END-OF-ELEMENT and START-OF-ELEMENT
event changes.

v PROCESSING-INSTRUCTION-DATA event (changed)

– XMLSS: XML-TEXT or XML-NTEXT could have a substring of the value for
the PROCESSING-INSTRUCTION-DATA event.

– COMPAT: XML-TEXT or XML-NTEXT always has the complete string of the
value for the PROCESSING-INSTRUCTION-DATA event.

– To migrate to XMLPARSE(XMLSS): You might have to modify your code
that handles the PROCESSING-INSTRUCTION-DATA event to handle more
than one event if you get a substring of the PROCESSING-INSTRUCTION-
DATA value in XML-TEXT or XML-NTEXT. If that is the case, you get two or
more PROCESSING-INSTRUCTION-DATA events, each one preceded by its
matching PROCESSING-INSTRUCTION-TARGET event. You would then
concatenate the PROCESSING-INSTRUCTION-DATA substrings together to
reconstitute the complete data string.

v PROCESSING-INSTRUCTION-TARGET event (changed)

– XMLSS: If the processing instruction data is split into substrings, the
PROCESSING-INSTRUCTION-TARGET event is repeated before each instance
of the PROCESSING-INSTRUCTION-DATA event for a given processing
instruction.

– COMPAT: The PROCESSING-INSTRUCTION-TARGET event occurs only
once for a given processing instruction.

– To migrate to XMLPARSE(XMLSS): You might have to modify your code to
accommodate multiple occurrences of the PROCESSING-INSTRUCTION-
TARGET event while accumulating processing instruction data.

v STANDALONE-DECLARATION event (no change)

– XMLSS and COMPAT have the same behavior for the STANDALONE-
DECLARATION event.

– To migrate to XMLPARSE(XMLSS): No change required.
v START-OF-CDATA-SECTION event (changed)

– XMLSS: All XML special registers except XML-EVENT, XML-CODE and
XML-INFORMATION are empty with length zero.

– COMPAT: XML-TEXT or XML-NTEXT always contains the string "![CDATA[".

Appendix L. Migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS) 301

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|
|

|

|
|

|

|

|
|

|

– To migrate to XMLPARSE(XMLSS): If the string "![CDATA[" is acquired from
the START-OF-CDATA-SECTION event, change your code to manually return
it using a literal, or data item initialized with the value "![CDATA[".

v START-OF-DOCUMENT event (changed)

– XMLSS: All XML special registers except XML-EVENT, XML-CODE and
XML-INFORMATION are empty with length zero.

– COMPAT: XML-TEXT or XML-NTEXT contains the entire document.
– To migrate to XMLPARSE(XMLSS): Change your code to not require the

entire document for START-OF-DOCUMENT.
v START-OF-ELEMENT event (changed)

– XMLSS: XML-TEXT or XML-NTEXT contains the local part of the start
element name or empty element name. If the element name is in a
namespace, XML-NAMESPACE or XML-NNAMESPACE contains the
namespace, otherwise these special registers are empty with length zero. If
the element name is in a namespace and is prefixed (of the form
"prefix:local-part"), XML-NAMESPACE-PREFIX or XML-NNAMESPACE-
PREFIX contains the prefix, otherwise these special registers are empty with
length zero.

– COMPAT: XML-TEXT or XML-NTEXT contains the complete start element
name, including any prefix. If the element name is not in a namespace, there
is no difference between COMPAT and XMLSS for START-OF-ELEMENT.

– To migrate to XMLPARSE(XMLSS): If the element name is not in a
namespace, then no change is required. If the element name is in a
namespace, change your code to not use the complete element name, or
reconstruct the complete element name from the separate parts in the XML
text and namespace special registers.

v UNKNOWN-REFERENCE-IN-ATTRIBUTE event (discontinued)

– XMLSS: Does not occur. The parser always signals an EXCEPTION event if,
while processing an attribute value, it encounters a reference to an entity that
has not been defined.

– COMPAT: XML-TEXT or XML-NTEXT contains the entity reference name, not
including the "&" and ";" delimiters.

– To migrate to XMLPARSE(XMLSS): Ensure that your XML documents do not
contain any undefined entity references in attribute values.

v UNKNOWN-REFERENCE-IN-CONTENT event (discontinued)

– XMLSS: Does not occur. Instead, an UNRESOLVED-REFERENCE or
EXCEPTION event occurs.

– COMPAT: XML-TEXT or XML-NTEXT contains the entity reference name, not
including the "&" and ";" delimiters.

– To migrate to XMLPARSE(XMLSS): Change your code that processes
UNKNOWN-REFERENCE-IN-CONTENT to process UNRESOLVED-
REFERENCE instead.
The UNRESOLVED-REFERENCE event is signaled only if all of the following
conditions are true:
- The unresolved reference is within element content, not an attribute value.
- The XML document starts with an XML declaration that specifies

standalone="no".
- The XML document contains a document type declaration, for example:

<!DOCTYPE rootElementName>

302 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|

|

|
|

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|
|

|
|

|
|

|

|
|

|
|

|
|
|

|
|

|

|
|

|

|

- If the VALIDATING phrase is specified on the XML PARSE statement, the
document type declaration must also specify an external DTD subset, for
example:
<!DOCTYPE rootElementName SYSTEM "extSub.dtd">

If these conditions are not met, the parser signals an EXCEPTION event
instead of UNRESOLVED-REFERENCE.

v UNRESOLVED-REFERENCE event (new)

– XMLSS: XML-TEXT or XML-NTEXT contains the entity reference name, not
including the "&" and ";" delimiters.

– COMPAT: The event does not occur. Instead an UNKNOWN-REFERENCE-
IN-CONTENT event would occur.

– To migrate to XMLPARSE(XMLSS): See UNKNOWN-REFERENCE-IN-
CONTENT.

v VERSION-INFORMATION event (no change)

– both parsers have the same behavior for the VERSION-INFORMATION
event.

– To migrate to XMLPARSE(XMLSS): No change required.

More differences between XMLPARSE(XMLSS) and XMLPARSE(COMPAT):

v XML-CODE

– XMLSS: When XML-CODE is set by the parser for an EXCEPTION event, the
first halfword is the return code and the last halfword is the reason code.
Convert the value to hexadecimal. You can find common return code and
reason code in the z/OS XML System Services User's Guide and Reference. You
can also find COBOL specific return code and reason code in the Enterprise
COBOL Programming Guide

– COMPAT: XML-CODE values are described in decimal in the Enterprise
COBOL Programming Guide, Version 4 Release 2.

– To migrate to XMLPARSE(XMLSS): If your program tests for specific
XML-CODE values for EXCEPTION events, you might have to change those
values in your source program.

v Condition handling, RESUME, and XML PARSE statements

– XMLSS: If a condition handling routine, registered by CEEHDLR or runtime
option USERHDLR, gets control while executing a processing procedure due
to an exception in the processing procedure and the resume cursor is moved
by CEEMRCE to a point in the program before an XML PARSE statement,
and RESUME is requested from the condition manager, the second XML
PARSE would result in the following severity 3 runtime error message:
IGZ0228S There was an invalid attempt to start an XML PARSE statement.

– COMPAT: If a condition handling routine (registered by CEEHDLR or
runtime option USERHDLR) gets control while executing a processing
procedure due to an exception in the processing procedure, and the resume
cursor is moved by CEEMRCE to a point in the program before an XML
PARSE statement, and RESUME is requested from the condition manage, the
second XML PARSE would start sucessfully.

– To migrate to XMLPARSE(XMLSS): Move the call to CEE3SRP to be within
the processing procedure. Then at the resumption point, if the condition
handling routine is unable to recover from the exception, terminate parsing
by moving -1 to XML-CODE. If the condition handling routine is able to
make an effective recovery, you might be able to continue parsing by leaving
XML-CODE unchanged.

Appendix L. Migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS) 303

|
|
|

|

|
|

|

|
|

|
|

|
|

|

|
|

|

|

|

|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

Alternatively, you can use CEEMRCR instead of CEEMRCE so that when
execution is resumed, it is in the program that called the program that had
the XML PARSE statement that got the exception in the processing procedure.
Either of these methods properly addresses the exception.

The following table shows the predefined entity references.

Table 44. The predefined entity references

Predefined entity Character

< <

> >

& &

' '

" "

304 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|
|

|

|

||

||

||

||

||

||

||
|

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1991, 2019 305

|

Neither International Business Machines Corporation nor any of its affiliates
assume any responsibility or liability in respect of any results obtained by
implementing any recommendations contained in this article/document.
Implementation of any such recommendations is entirely at the implementor's risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

306 Enterprise COBOL for z/OS, V5.2 Migration Guide

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This information is intended to help you write programs using IBM Enterprise
COBOL for z/OS. This Migration Guide documents General-Use Programming
Interface and Associated Guidance Information provided for IBM Enterprise
COBOL for z/OS. General-Use programming interfaces allow the customer to
write programs that obtain the services of IBM Enterprise COBOL for z/OS.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 307

http://www.ibm.com/legal/copytrade.shtml

308 Enterprise COBOL for z/OS, V5.2 Migration Guide

Glossary

The terms in this glossary are defined in
accordance with their meaning in COBOL. These
terms might or might not have the same meaning
in other languages.

This glossary includes terms and definitions from
the following publications:
v ANSI INCITS 23-1985, Programming Languages -

COBOL as amended by:
– ANSI INCITS 23a-1989, Programming

Languages - Intrinsic Function Module for
COBOL,

– ANSI INCITS 23b-1993, Programming
Language - Correction Amendment for COBOL

v ANSI INCITS 172-2002 American National
Standard Dictionary of Information Technology.

American National Standard definitions are
preceded by an asterisk (*).

A

* abbreviated combined relation condition
The combined condition that results from
the explicit omission of a common subject
or a common subject and common
relational operator in a consecutive
sequence of relation conditions.

abend Abnormal termination of a program.

above the 16-MB line
Storage above the so-called 16-MB line (or
boundary) but below the 2-GB bar. This
storage is addressable only in 31-bit mode
(AMODE 31). Before IBM introduced the
MVS/XA architecture in the 1980s, the
virtual storage for a program was limited
to 16 MB. Programs that have been
compiled with 24-bit mode (AMODE 24)
can address only 16 MB of space, as
though they were kept under an
imaginary storage line. Since VS COBOL
II, a program that has AMODE 31 can
address data above the 16-MB line.

* access mode
The manner in which records are to be
operated upon within a file.

* actual decimal point
The physical representation, using the

decimal point characters period (.) or
comma (,), of the decimal point position
in a data item.

* alphabet-name
A user-defined word, in the
SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION, that assigns
a name to a specific character set or
collating sequence.

* alphabetic character
A letter or a space character.

* alphanumeric character
Any character in the computer's
single-byte character set.

alphanumeric data item
A general reference to a data item that is
described implicitly or explicitly as USAGE
DISPLAY, and that has category
alphanumeric, alphanumeric-edited, or
numeric-edited.

alphanumeric-edited data item
A data item that is described by a PICTURE
character string that contains at least one
instance of the symbol A or X and at least
one of the simple insertion symbols B, 0,
or /. An alphanumeric-edited data item
has USAGE DISPLAY.

* alphanumeric function
A function whose value is composed of a
string of one or more characters from the
computer's character set.

* alternate record key
A key, other than the prime record key,
whose contents identify a record within
an indexed file.

AMODE
Provided by the linkage-editor, the
attribute of a program object that
indicates the addressing mode in which
the program object should be entered.

application
A collection of one or more routines
cooperating to achieve particular
objectives.

ANSI (American National Standards Institute)
An organization consisting of producers,

© Copyright IBM Corp. 1991, 2019 309

consumers, and general interest groups,
that establishes the procedures by which
accredited organizations create and
maintain voluntary industry standards in
the United States.

* argument
(1) An expression used at the point of a
call to specify a data item or aggregate to
be passed to the called routine. (2) The
data passed to a called routine at the
point of call or the data received by a
called routine.

* arithmetic expression
An identifier of a numeric elementary
item, a numeric literal, such identifiers
and literals separated by arithmetic
operators, two arithmetic expressions
separated by an arithmetic operator, or an
arithmetic expression enclosed in
parentheses.

* arithmetic operation
The process caused by the execution of an
arithmetic statement, or the evaluation of
an arithmetic expression, that results in a
mathematically correct solution to the
arguments presented.

* arithmetic operator
A single character, or a fixed
two-character combination that belongs to
the following set:

Character
Meaning

+ addition

- subtraction

* multiplication

/ division

** exponentiation

* arithmetic statement
A statement that causes an arithmetic
operation to be executed. The arithmetic
statements are the ADD, COMPUTE,
DIVIDE, MULTIPLY, and SUBTRACT
statements.

array In Language Environment, an aggregate
consisting of data objects, each of which
may be uniquely referenced by
subscripting. Roughly analogous to a
COBOL table.

* ascending key
A key upon the values of which data is
ordered, starting with the lowest value of
the key up to the highest value of the key,
in accordance with the rules for
comparing data items.

ASCII American National Standard Code for
Information Interchange. The standard
code, using a coded character set
consisting of 7-bit coded characters (8 bits
including parity check), used for
information interchange between data
processing systems, data communication
systems, and associated equipment. The
ASCII set consists of control characters
and graphic characters.

Extension: IBM has defined an extension
to ASCII code (characters 128-255).

assignment-name
A name that identifies the organization of
a COBOL file and the name by which it is
known to the system.

* assumed decimal point
A decimal point position that does not
involve the existence of an actual
character in a data item. The assumed
decimal point has logical meaning with
no physical representation.

* AT END condition
A condition caused by one of the
following operations:
1. A READ statement for a sequentially

accessed file, when one of the
following conditions is encountered:
v No next logical record exists in the

file.
v The number of significant digits in

the relative record number is larger
than the size of the relative key data
item.

v An optional input file is not present.
2. A RETURN statement, when no next

logical record exists for the associated
sort or merge file.

3. A SEARCH statement, when the
search operation terminates without
satisfying the condition specified in
any of the associated WHEN phrases.

B

310 Enterprise COBOL for z/OS, V5.2 Migration Guide

basic document encoding
For an XML document, one of the
following encoding categories that the
XML parser determines by examining the
first few bytes of the document:
v ASCII
v EBCDIC
v Unicode UTF-16, either big-endian or

little-endian
v Other unsupported encoding
v No recognizable encoding

big-endian
The default format that the mainframe
and the AIX® workstation use to store
binary data and UTF-16 characters. In this
format, the least significant byte of a
binary data item is at the highest address
and the least significant byte of a UTF-16
character is at the highest address.
Compare with little-endian.

binary item
A numeric data item represented in
binary notation (on the base 2 numbering
system). Binary items have a decimal
equivalent consisting of the decimal digits
0 through 9, plus an operational sign. The
leftmost bit of the item is the operational
sign.

binary search
A dichotomizing search in which, at each
step of the search, the set of data elements
is divided by two; some appropriate
action is taken in the case of an odd
number.

* block
A physical unit of data that is normally
composed of one or more logical records.
For mass storage files, a block may
contain a portion of a logical record. The
size of a block has no direct relationship
to the size of the file within which the
block is contained or to the size of the
logical record(s) that are either contained
within the block or that overlap the block.
The term is synonymous with physical
record.

breakpoint
A place in a program, usually specified by
a command or condition, where execution
may be interrupted and control given to
the workstation user or to a specified
debug program.

Btrieve
A key-indexed record management
system that allows applications to manage
records by key value, sequential access
method, or random access method.
Enterprise COBOL supports COBOL
sequential and indexed file I-O language
through Btrieve.

buffer An area of storage into which data is read
or from which it is written. Typically,
buffers are used only for temporary
storage.

built-in function
See “intrinsic function”.

byte The basic unit of storage addressability. It
has a length of 8 bits.

C

C language
A high-level language used to develop
software applications in compact, efficient
code that can be run on different types of
computers with minimal change.

C++ language
An object-oriented high-level language
that evolved from the C language. C++
exploits the benefits of object-oriented
technology such as code modularity,
portability, and reuse.

callable services
A set of services that can be invoked by a
Language Environment, featuring defined
call interface, and usable by all programs
sharing the Language Environment
conventions.

cataloged procedure
A set of job control statements placed in a
partitioned data set called the procedure
library (SYS1.PROCLIB) You can use
cataloged procedures to save time and
reduce errors coding JCL.

called program
A program that is the object of a CALL
statement.

* calling program
A program that executes a CALL to
another program.

case structure
A program processing logic in which a

Glossary 311

series of conditions is tested in order to
make a choice between a number of
resulting actions.

CEEDUMP
A dump of the runtime environment for
Language Environment and the member
language libraries. Sections of the dump
are selectively included, depending on
options specified on the dump invocation.
This is not a dump of the full address
space, but a dump of storage and control
blocks that Language Environment and its
members control.

cataloged procedure
A set of job control statements placed in a
partitioned data set called the procedure
library (SYS1.PROCLIB). You can use
cataloged procedures to save time and
reduce errors coding JCL.

century window
The 100-year interval in which Language
Environment assumes all 2-digit years lie.
The Language Environment default
century window begins 80 years before
the system date.

* character
A letter, digit, or other symbol that is
used as part of the organization, control,
or representative of data. A character is
often in the form of a spatial arrangement
of adjacent or connected strokes.

character position
The amount of physical storage required
to store a single standard data format
character described as USAGE IS
DISPLAY.

character set
All the valid characters for a
programming language or a computer
system.

* character-string
A sequence of contiguous characters that
form a COBOL word, a literal, a
PICTURE character-string, or a
comment-entry. Must be delimited by
separators.

checkpoint
A point at which information about the
status of a job and the system can be
recorded so that the job step can be later
restarted.

CICS Customer Information Control System.

CICS translator
A routine that accepts as input an
application containing EXEC CICS
commands and produces as output an
equivalent application in which each
CICS command has been translated into
the language of the source.

* class The entity that defines common behavior
and implementation for zero, one, or
more objects. The objects that share the
same implementation are considered to be
objects of the same class.

* class condition
The proposition, for which a truth value
can be determined, that the content of an
item is wholly alphabetic, is wholly
numeric, or consists exclusively of those
characters listed in the definition of a
class-name.

* Class Definition
The COBOL source unit that defines a
class.

* class identification entry
An entry in the CLASS-ID paragraph of
the IDENTIFICATION DIVISION which
contains clauses that specify the
class-name and assign selected attributes
to the class definition.

* class-name
A user-defined word defined in the
SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION that assigns a
name to the proposition for which a truth
value can be defined, that the content of a
data item consists exclusively of those
characters listed in the definition of the
class-name.

class object
The runtime object that represents a class.

* clause
An ordered set of consecutive COBOL
character-strings whose purpose is to
specify an attribute of an entry.

CMS (Conversational Monitor System)
A virtual machine operating system that
provides general interactive, time-sharing,
problem solving, and program
development capabilities, and that
operates only under the control of the
VM/SP control program.

312 Enterprise COBOL for z/OS, V5.2 Migration Guide

* COBOL character set
The complete COBOL character set
consists of the characters listed below:

Character
Meaning

0,1...,9 digit

A,B,...,Z
uppercase letter

a,b,...,z
lowercase letter

? space

+ plus sign

- minus sign (hyphen)

* asterisk

/ slant (virgule, slash)

= equal sign

$ currency sign

, comma (decimal point)

; semicolon

. period (decimal point, full stop)

" quotation mark

(left parenthesis

) right parenthesis

> greater than symbol

< less than symbol

: colon

* COBOL word
See “word”.

code page
An assignment of graphic characters and
control function meanings to all code
points; for example, assignment of
characters and meanings to 256 code
points for 8-bit code, assignment of
characters and meanings to 128 code
points for 7-bit code.

* collating sequence
The sequence in which the characters that
are acceptable to a computer are ordered
for purposes of sorting, merging,
comparing, and for processing indexed
files sequentially.

* column
A character position within a print line.

The columns are numbered from 1, by 1,
starting at the leftmost character position
of the print line and extending to the
rightmost position of the print line.

* combined condition
A condition that is the result of
connecting two or more conditions with
the AND or the OR logical operator.

* comment-entry
An entry in the IDENTIFICATION
DIVISION that may be any combination
of characters from the computer's
character set.

* comment line
A source program line represented by an
asterisk (*) in the indicator area of the line
and any characters from the computer's
character set in area A and area B of that
line. The comment line serves only for
documentation in a program. A special
form of comment line represented by a
slant (/) in the indicator area of the line
and any characters from the computer's
character set in area A and area B of that
line causes page ejection prior to printing
the comment.

* common program
A program which, despite being directly
contained within another program, may
be called from any program directly or
indirectly contained in that other
program.

* compile
(1) To translate a program expressed in a
high-level language into a program
expressed in an intermediate language,
assembly language, or a computer
language. (2) To prepare a machine
language program from a computer
program written in another programming
language by making use of the overall
logic structure of the program, or
generating more than one computer
instruction for each symbolic statement,
or both, as well as performing the
function of an assembler.

* compile time
The time at which a COBOL source
program is translated, by a COBOL
compiler, to a COBOL object program.

compiler
A program that translates a program

Glossary 313

written in a higher level language into a
machine language object program.

compiler-directing statement
A statement, beginning with a
compiler-directing verb, that causes the
compiler to take a specific action during
compilation. Compiler directives are
contained in the COBOL source program.
Therefore, you can specify different
suboptions of the directive within the
source program by using multiple
compiler-directive statements.

compiler options
Keywords that can be specified to control
certain aspects of compilation. Compiler
options can control the nature of the
program object generated by the compiler,
the types of printed output to be
produced, the efficient use of the
compiler, and the destination of error
messages. See also compile-time options.

compile-time options
Keywords that can be specified to control
certain aspects of compilation. Compiler
options can control the nature of the
program object generated by the compiler,
the types of printed output to be
produced, the efficient use of the
compiler, and the destination of error
messages.

* complex condition
A condition in which one or more logical
operators act upon one or more
conditions. (See also “negated simple
condition”, “combined condition”, and
“negated combined condition”.)

* computer-name
A system-name that identifies the
computer upon which the program is to
be compiled or run.

condition
An exception that has been enabled, or
recognized, by Language Environment
and thus is eligible to activate user and
language condition handlers. Any
alteration to the normal programmed flow
of an application. Conditions can be
detected by the hardware/operating
system and results in an interrupt. They
can also be detected by language-specific
generated code or language library code.

* condition
A status of a program at run time for
which a truth value can be determined.
Where the term 'condition' (condition-1,
condition-2,...) appears in these language
specifications in or in reference to
'condition' (condition-1, condition-2,...) of
a general format, it is a conditional
expression consisting of either a simple
condition optionally parenthesized, or a
combined condition consisting of the
syntactically correct combination of
simple conditions, logical operators, and
parentheses, for which a truth value can
be determined.

* conditional expression
A simple condition or a complex
condition specified in an EVALUATE, IF,
PERFORM, or SEARCH statement. (See
also “simple condition” and “complex
condition”.)

* conditional phrase
A conditional phrase specifies the action
to be taken upon determination of the
truth value of a condition resulting from
the execution of a conditional statement.

* conditional statement
A statement specifying that the truth
value of a condition is to be determined
and that the subsequent action of the
object program is dependent on this truth
value.

* conditional variable
A data item one or more values of which
has a condition-name assigned to it.

* condition-name
A user-defined word that assigns a name
to a subset of values that a conditional
variable may assume; or a user-defined
word assigned to a status of an
implementor defined switch or device.
When 'condition-name' is used in the
general formats, it represents a unique
data item reference consisting of a
syntactically correct combination of a
'condition-name', together with qualifiers
and subscripts, as required for uniqueness
of reference.

* condition-name condition
The proposition, for which a truth value
can be determined, that the value of a
conditional variable is a member of the

314 Enterprise COBOL for z/OS, V5.2 Migration Guide

set of values attributed to a
condition-name associated with the
conditional variable.

* CONFIGURATION SECTION
A section of the ENVIRONMENT
DIVISION that describes overall
specifications of source and object
programs and class definitions.

CONSOLE
A COBOL environment-name associated
with the operator console.

* contiguous items
Items that are described by consecutive
entries in the PROCEDURE DIVISION,
and that bear a definite hierarchic
relationship to each other.

copybook
A file or library member containing a
sequence of code that is included in the
source program at compile time using the
COPY statement. The file can be created
by the user, supplied by COBOL, or
supplied by another product.

* counter
A data item used for storing numbers or
number representations in a manner that
permits these numbers to be increased or
decreased by the value of another
number, or to be changed or reset to zero
or to an arbitrary positive or negative
value.

cross-reference listing
The portion of the compiler listing that
contains information about where files,
fields, and indicators are defined,
referenced, and modified in a program.

currency sign
The character '$' of the COBOL character
set or that character defined by the
CURRENCY compiler option. If the
NOCURRENCY compiler option is in
effect, the currency sign is defined as the
character '$'.

currency symbol
The character defined by the CURRENCY
compiler option or by the CURRENCY
SIGN clause in the SPECIAL-NAMES
paragraph. If the NOCURRENCY
compiler option is in effect for a COBOL
source program and the CURRENCY
SIGN clause is also not present in the

source program, the currency symbol is
identical to the currency sign.

* current record
In file processing, the record that is
available in the record area associated
with a file.

* current volume pointer
A conceptual entity that points to the
current volume of a sequential file.

D

* data clause
A clause, appearing in a data description
entry in the DATA DIVISION of a COBOL
program, that provides information
describing a particular attribute of a data
item.

* data description entry
An entry in the DATA DIVISION of a
COBOL program that is composed of a
level-number followed by a data-name, if
required, and then followed by a set of
data clauses, as required.

DATA DIVISION
In COBOL, the part of a program that
describes the files to be used in the
program and the records contained within
the files. It also describes any
WORKING-STORAGE data items,
LINKAGE SECTION data items, and
LOCAL-STORAGE data items that are
needed.

* data item
A unit of data (excluding literals) defined
by a COBOL program or by the rules for
function evaluation.

* data-name
A user-defined word that names a data
item described in a data description entry.
When used in the general formats,
'data-name' represents a word that must
not be reference-modified, subscripted or
qualified unless specifically permitted by
the rules for the format.

DBCS (Double-Byte Character Set)
See “Double-Byte Character Set (DBCS)”.

* debugging line
A debugging line is any line with a 'D' in
the indicator area of the line.

Glossary 315

* debugging section
A section that contains a USE FOR
DEBUGGING statement.

* declarative sentence
A compiler-directing sentence consisting
of a single USE statement terminated by
the separator period.

* declaratives
A set of one or more special purpose
sections, written at the beginning of the
PROCEDURE DIVISION, the first of
which is preceded by the key word
DECLARATIVES and the last of which is
followed by the key words END
DECLARATIVES. A declarative is
composed of a section header, followed
by a USE compiler-directing sentence,
followed by a set of zero, one, or more
associated paragraphs.

* de-edit
The logical removal of all editing
characters from a numeric edited data
item in order to determine that item's
unedited numeric value.

* delimited scope statement
Any statement that includes its explicit
scope terminator.

* delimiter
A character or a sequence of contiguous
characters that identify the end of a string
of characters and separate that string of
characters from the following string of
characters. A delimiter is not part of the
string of characters that it delimits.

* descending key
A key upon the values of which data is
ordered starting with the highest value of
key down to the lowest value of key, in
accordance with the rules for comparing
data items.

digit Any of the numerals from 0 through 9. In
COBOL, the term is not used in reference
to any other symbol.

* digit position
The amount of physical storage required
to store a single digit. This amount may
vary depending on the usage specified in
the data description entry that defines the
data item.

* direct access
The facility to obtain data from storage

devices or to enter data into a storage
device in such a way that the process
depends only on the location of that data
and not on a reference to data previously
accessed.

* division
A collection of zero, one or more sections
or paragraphs, called the division body,
that are formed and combined in
accordance with a specific set of rules.
Each division consists of the division
header and the related division body.
There are four (4) divisions in a COBOL
program: Identification, Environment,
Data, and Procedure.

* division header
A combination of words followed by a
separator period that indicates the
beginning of a division. The division
headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

DLL See “dynamic link library”.

do construction
In structured programming, a DO
statement is used to group a number of
statements in a procedure. In COBOL, an
in-line PERFORM statement functions in
the same way.

document type declaration
An XML element that contains or points
to markup declarations that provide a
grammar for a class of documents. This
grammar is known as a document type
definition, or DTD.

do-until
In structured programming, a do-until
loop will be executed at least once, and
until a given condition is true. In COBOL,
a TEST AFTER phrase used with the
PERFORM statement functions in the
same way.

do-while
In structured programming, a do-while
loop will be executed if, and while, a
given condition is true. In COBOL, a
TEST BEFORE phrase used with the
PERFORM statement functions in the
same way.

316 Enterprise COBOL for z/OS, V5.2 Migration Guide

Double-Byte Character Set (DBCS)
A set of characters in which each
character is represented by two bytes.
Languages such as Japanese, Chinese, and
Korean, which contain more symbols than
can be represented by 256 code points,
require Double-Byte Character Sets.
Because each character requires two bytes,
entering, displaying, and printing DBCS
characters requires hardware and
supporting software that are
DBCS-capable.

* dynamic access
An access mode in which specific logical
records can be obtained from or placed
into a mass storage file in a nonsequential
manner and obtained from a file in a
sequential manner during the scope of the
same OPEN statement.

dynamic link library
A file containing executable code and data
bound to a program at load time or run
time, rather than during linking. The code
and data in a dynamic link library can be
shared by several applications
simultaneously.

Dynamic Storage Area (DSA)
Dynamically acquired storage composed
of a register save area and an area
available for dynamic storage allocation
(such as program variables). DSAs are
generally allocated within STACK
segments managed by Language
Environment.

E

* EBCDIC (Extended Binary-Coded Decimal
Interchange Code)

A coded character set consisting of 8-bit
coded characters.

EBCDIC character
Any one of the symbols included in the
8-bit EBCDIC (Extended
Binary-Coded-Decimal Interchange Code)
set.

edited data item
A data item that has been modified by
suppressing zeroes or inserting editing
characters.

* editing character
A single character or a fixed two-character
combination belonging to the following
set:

Character
Meaning

? space

0 zero

+ plus

- minus

CR credit

DB debit

Z zero suppress

* check protect

$ currency sign

, comma (decimal point)

. period (decimal point)

/ slant (virgule, slash)

element (text element)
One logical unit of a string of text, such
as the description of a single data item or
verb, preceded by a unique code
identifying the element type.

* elementary item
A data item that is described as not being
further logically subdivided.

enclave
In Language Environment, an
independent collection of routines, one of
which is designated as the main routine
and is invoked first. An enclave is
roughly analogous to a program or run
unit. An executable program..

*end class marker
A combination of words, followed by a
separator period, that indicates the end of
a COBOL class definition. The end class
marker is:
END CLASS class-name.

*end method marker
A combination of words, followed by a
separator period, that indicates the end of
a COBOL method definition. The end
method marker is:
END METHOD method-name.

Glossary 317

* end of PROCEDURE DIVISION
The physical position of a COBOL source
program after which no further
procedures appear.

* end program marker
A combination of words, followed by a
separator period, that indicates the end of
a COBOL source program. The end
program marker is:
END PROGRAM program-name.

* entry
Any descriptive set of consecutive clauses
terminated by a separator period and
written in the IDENTIFICATION
DIVISION, ENVIRONMENT DIVISION,
or DATA DIVISION of a COBOL
program.

* environment clause
A clause that appears as part of an
ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION
One of the four main component parts of
a COBOL program, class definition, or
method definition. The ENVIRONMENT
DIVISION describes the computers upon
which the source program is compiled
and those on which the object program is
executed, and provides a linkage between
the logical concept of files and their
records, and the physical aspects of the
devices on which files are stored.

environment-name
A name, specified by IBM, that identifies
system logical units, printer and card
punch control characters, report codes, or
program switches. When an
environment-name is associated with a
mnemonic-name in the ENVIRONMENT
DIVISION, the mnemonic-name may then
be substituted in any format in which
such substitution is valid.

environment variable
Any of a number of variables that
describe the way an operating system is
going to run and the devices it is going to
recognize.

execution time
Synonym for run time.

execution-time environment
See “runtime environment”.

* explicit scope terminator
A reserved word that terminates the scope
of a particular PROCEDURE DIVISION
statement.

exponent
A number, indicating the power to which
another number (the base) is to be raised.
Positive exponents denote multiplication,
negative exponents denote division,
fractional exponents denote a root of a
quantity. In COBOL, an exponential
expression is indicated with the symbol
'**' followed by the exponent.

* expression
An arithmetic or conditional expression.

* extend mode
The state of a file after execution of an
OPEN statement, with the EXTEND
phrase specified for that file, and before
the execution of a CLOSE statement,
without the REEL or UNIT phrase for that
file.

extensions
Certain COBOL syntax and semantics
supported by IBM compilers in addition
to those described in ANSI Standard.

* external data
Data that persists over the lifetime of an
enclave and maintains last-used values
whenever a routine within the enclave is
reentered. Within an enclave consisting of
a single program object, it is equivalent to
any C data objects that have static storage
duration, A FORTRAN common block,
and COBOL EXTERNAL data.

* external data item
A data item which is described as part of
an external record in one or more
programs of a run unit and which itself
may be referenced from any program in
which it is described.

* external data record
A logical record which is described in one
or more programs of a run unit and
whose constituent data items may be
referenced from any program in which
they are described.

external decimal item
A format for representing numbers in
which the digit is contained in bits 4
through 7 and the sign is contained in
bits 0 through 3 of the rightmost byte.

318 Enterprise COBOL for z/OS, V5.2 Migration Guide

Bits 0 through 3 of all other bytes contain
1's (hex F). For example, the decimal
value of +123 is represented as 1111 0001
1111 0010 1111 0011. (Also known as
“zoned decimal item”.)

* external file connector
A file connector which is accessible to one
or more object programs in the run unit.

external floating-point item
A format for representing numbers in
which a real number is represented by a
pair of distinct numerals. In a
floating-point representation, the real
number is the product of the fixed-point
part (the first numeral), and a value
obtained by raising the implicit
floating-point base to a power denoted by
the exponent (the second numeral).

For example, a floating-point
representation of the number 0.0001234 is:
0.1234 -3, where 0.1234 is the mantissa
and -3 is the exponent.

external program
The outermost program. A program that
is not nested.

* external switch
A hardware or software device, defined
and named by the implementor, which is
used to indicate that one of two alternate
states exists.

F

* figurative constant
A compiler-generated value referenced
through the use of certain reserved
words.

* file A named collection of related data records
that is stored and retrieved by an
assigned name. Equivalent to an MVS
data set.

* file attribute conflict condition
An unsuccessful attempt has been made
to execute an input-output operation on a
file and the file attributes, as specified for
that file in the program, do not match the
fixed attributes for that file.

* file clause
A clause that appears as part of any of
the following DATA DIVISION entries:

file description entry (FD entry) and
sort-merge file description entry (SD
entry).

* file connector
A storage area which contains information
about a file and is used as the linkage
between a file-name and a physical file
and between a file-name and its
associated record area.

File-Control
The name of an ENVIRONMENT
DIVISION paragraph in which the data
files for a given source program are
declared.

file control block
Block containing the addresses of I/O
routines, information about how they
were opened and closed, and a pointer to
the file information block.

* file control entry
A SELECT clause and all its subordinate
clauses which declare the relevant
physical attributes of a file.

* file description entry
An entry in the FILE SECTION of the
DATA DIVISION that is composed of the
level indicator FD, followed by a
file-name, and then followed by a set of
file clauses as required.

* file-name
A user-defined word that names a file
connector described in a file description
entry or a sort-merge file description
entry within the FILE SECTION of the
DATA DIVISION.

* file organization
The permanent logical file structure
established at the time that a file is
created.

*file position indicator
A conceptual entity that contains the
value of the current key within the key of
reference for an indexed file, or the record
number of the current record for a
sequential file, or the relative record
number of the current record for a
relative file, or indicates that no next
logical record exists, or that an optional
input file is not present, or that the at end
condition already exists, or that no valid
next record has been established.

Glossary 319

* FILE SECTION
The section of the DATA DIVISION that
contains file description entries and
sort-merge file description entries together
with their associated record descriptions.

file system
A collection of files and their attributes. A
file system provides a name space for file
serial numbers referring to those files.

* fixed file attributes
Information about a file which is
established when a file is created and
cannot subsequently be changed during
the existence of the file. These attributes
include the organization of the file
(sequential, relative, or indexed), the
prime record key, the alternate record
keys, the code set, the minimum and
maximum record size, the record type
(fixed or variable), the collating sequence
of the keys for indexed files, the blocking
factor, the padding character, and the
record delimiter.

* fixed length record
A record associated with a file whose file
description or sort-merge description
entry requires that all records contain the
same number of character positions.

fixed-point number
A numeric data item defined with a
PICTURE clause that specifies the location
of an optional sign, the number of digits
it contains, and the location of an optional
decimal point. The format may be either
binary, packed decimal, or external
decimal.

floating-point number
A numeric data item containing a fraction
and an exponent. Its value is obtained by
multiplying the fraction by the base of the
numeric data item raised to the power
specified by the exponent.

* format
A specific arrangement of a set of data.

* function
A routine that is invoked by coding its
name in an expression. The routine passes
a result back to the invoker through the
routine name.

* function-identifier
A syntactically correct combination of
character-strings and separators that

references a function. The data item
represented by a function is uniquely
identified by a function-name with its
arguments, if any. A function-identifier
may include a reference-modifier. A
function-identifier that references an
alphanumeric function may be specified
anywhere in the general formats that an
identifier may be specified, subject to
certain restrictions. A function-identifier
that references an integer or numeric
function may be referenced anywhere in
the general formats that an arithmetic
expression may be specified.

function-name
A word that names the mechanism whose
invocation, along with required
arguments, determines the value of a
function.

G

* global name
A name which is declared in only one
program but which may be referenced
from that program and from any program
contained within that program.
Condition-names, data-names, file-names,
record-names, report-names, and some
special registers may be global names.

* group item
A data item that is composed of
subordinate data items.

H

header label
(1) A file label or data set label that
precedes the data records on a unit of
recording media. (2) Synonym for
beginning-of-file label.

* high order end
The leftmost character of a string of
characters.

HLL High-level language.

I

IBM COBOL extension
Certain COBOL syntax and semantics
supported by IBM compilers in addition
to those described in ANSI Standard.

IDENTIFICATION DIVISION
One of the four main component parts of
a COBOL program, class definition, or

320 Enterprise COBOL for z/OS, V5.2 Migration Guide

method definition. The IDENTIFICATION
DIVISION identifies the program name,
class name, or method name. The
IDENTIFICATION DIVISION may
include the following documentation:
author name, installation, or date.

* identifier
A syntactically correct combination of
character-strings and separators that
names a data item. When referencing a
data item that is not a function, an
identifier consists of a data-name,
together with its qualifiers, subscripts,
and reference-modifier, as required for
uniqueness of reference. When referencing
a data item which is a function, a
function-identifier is used.

IGZCBSN
The bootstrap routine for COBOL/370
Release 1. It must be link-edited with any
module that contains a COBOL/370
Release 1 program.

IGZCBSO
The bootstrap routine for COBOL for
MVS & VM Release 2, COBOL for OS/390
& VM and Enterprise COBOL. It must be
link-edited with any module that contains
a COBOL for MVS & VM Release 2,
COBOL for OS/390 & VM or Enterprise
COBOL program.

IGZEBST
The bootstrap routine for VS COBOL II. It
must be link-edited with any module that
contains a VS COBOL II program.

ILC InterLanguage Communication.
Interlanguage communication is defined
as programs that call or are called by
other high-level languages. Assembler is
not considered a high-level language;
thus, calls to and from assembler
programs are not considered ILC.

* imperative statement
A statement that either begins with an
imperative verb and specifies an
unconditional action to be taken or is a
conditional statement that is delimited by
its explicit scope terminator (delimited
scope statement). An imperative statement
may consist of a sequence of imperative
statements.

* implicit scope terminator
A separator period which terminates the

scope of any preceding unterminated
statement, or a phrase of a statement
which by its occurrence indicates the end
of the scope of any statement contained
within the preceding phrase.

IMS Information Management System, IBM
licensed product. IMS supports
hierarchical databases, data
communication, translation processing,
and database backout and recovery.

* index
A computer storage area or register, the
content of which represents the
identification of a particular element in a
table.

* index data item
A data item in which the values
associated with an index-name can be
stored in a form specified by the
implementor.

indexed data-name
An identifier that is composed of a
data-name, followed by one or more
index-names enclosed in parentheses.

* indexed file
A file with indexed organization.

* indexed organization
The permanent logical file structure in
which each record is identified by the
value of one or more keys within that
record.

indexing
Synonymous with subscripting using
index-names.

* index-name
A user-defined word that names an index
associated with a specific table.

* inheritance (for classes)
A mechanism for using the
implementation of one or more classes as
the basis for another class. A subclass
inherits from one or more superclasses. By
definition the inheriting class conforms to
the inherited classes.

* initial program
A program that is placed into an initial
state every time the program is called in a
run unit.

Glossary 321

* initial state
The state of a program when it is first
called in a run unit.

inline In a program, instructions that are
executed sequentially, without branching
to routines, subroutines, or other
programs.

* input file
A file that is opened in the INPUT mode.

* input mode
The state of a file after execution of an
OPEN statement, with the INPUT phrase
specified, for that file and before the
execution of a CLOSE statement, without
the REEL or UNIT phrase for that file.

* input-output file
A file that is opened in the I-O mode.

* INPUT-OUTPUT SECTION
The section of the ENVIRONMENT
DIVISION that names the files and the
external media required by an object
program or method and that provides
information required for transmission and
handling of data during execution of the
object program or method definition.

* Input-Output statement
A statement that causes files to be
processed by performing operations upon
individual records or upon the file as a
unit. The input-output statements are:
ACCEPT (with the identifier phrase),
CLOSE, DELETE, DISPLAY, OPEN,
READ, REWRITE, SET (with the TO ON
or TO OFF phrase), START, and WRITE.

* input procedure
A set of statements, to which control is
given during the execution of a format 1
SORT statement, for the purpose of
controlling the release of specified records
to be sorted.

instance data
Data defining the state of an object. The
instance data introduced by a class is
defined in the WORKING-STORAGE
SECTION of the DATA DIVISION of the
class definition. The state of an object also
includes the state of the instance variables
introduced by base classes that are
inherited by the current class. A separate
copy of the instance data is created for
each object instance.

* integer
(1) A numeric literal that does not include
any digit positions to the right of the
decimal point.

(2) A numeric data item defined in the
DATA DIVISION that does not include
any digit positions to the right of the
decimal point.

(3) A numeric function whose definition
provides that all digits to the right of the
decimal point are zero in the returned
value for any possible evaluation of the
function.

integer function
A function whose category is numeric and
whose definition does not include any
digit positions to the right of the decimal
point.

interlanguage communication (ILC)
The ability of routines written in different
programming languages to communicate.
ILC support allows the application writer
to readily build applications from
component routines written in a variety
of languages.

intermediate result
An intermediate field containing the
results of a succession of arithmetic
operations.

* internal data
The data described in a program
excluding all external data items and
external file connectors. Items described
in the LINKAGE SECTION of a program
are treated as internal data.

* internal data item
A data item which is described in one
program in a run unit. An internal data
item may have a global name.

internal decimal item
A format in which each byte in a field
except the rightmost byte represents two
numeric digits. The rightmost byte
contains one digit and the sign. For
example, the decimal value +123 is
represented as 0001 0010 0011 1111. (Also
known as packed decimal.)

* internal file connector
A file connector which is accessible to
only one object program in the run unit.

322 Enterprise COBOL for z/OS, V5.2 Migration Guide

|
|

* intra-record data structure
The entire collection of groups and
elementary data items from a logical
record which is defined by a contiguous
subset of the data description entries
which describe that record. These data
description entries include all entries
whose level-number is greater than the
level-number of the first data description
entry describing the intra-record data
structure.

intrinsic function
A predefined function, such as a
commonly used arithmetic function,
called by a built-in function reference.

* invalid key condition
A condition, at object time, caused when a
specific value of the key associated with
an indexed or relative file is determined
to be invalid.

* I-O-CONTROL
The name of an ENVIRONMENT
DIVISION paragraph in which object
program requirements for rerun points,
sharing of same areas by several data
files, and multiple file storage on a single
input-output device are specified.

* I-O-CONTROL entry
An entry in the I-O-CONTROL paragraph
of the ENVIRONMENT DIVISION which
contains clauses that provide information
required for the transmission and
handling of data on named files during
the execution of a program.

* I-O-Mode
The state of a file after execution of an
OPEN statement, with the I-O phrase
specified, for that file and before the
execution of a CLOSE statement without
the REEL or UNIT phase for that file.

* I-O status
A conceptual entity which contains the
two-character value indicating the
resulting status of an input-output
operation. This value is made available to
the program through the use of the FILE
STATUS clause in the file control entry for
the file.

iteration structure
A program processing logic in which a

series of statements is repeated while a
condition is true or until a condition is
true.

K

K When referring to storage capacity, two to
the tenth power; 1024 in decimal notation.

kernel The part of the component that contains
programs for such tasks as I/O,
management, and communication.

* key A data item that identifies the location of
a record, or a set of data items which
serve to identify the ordering of data.

* key of reference
The key, either prime or alternate,
currently being used to access records
within an indexed file.

* key word
A reserved word or function-name whose
presence is required when the format in
which the word appears is used in a
source program.

kilobyte (KB)
One kilobyte equals 1024 bytes.

L

* language-name
A system-name that specifies a particular
programming language.

Language Environment
Short form of z/OS Language
Environment. A set of architectural
constructs and interfaces that provides a
common runtime environment and
runtime services for C, C++, COBOL,
FORTRAN and PL/I applications. It is
required for programs compiled by
Language Environment-conforming
compilers and for Java applications.

Language Environment-conforming
Adhering to Language Environment's
common interface conventions.

last-used state
A program is in last-used state if its
internal values remain the same as when
the program was exited (are not reset to
their initial values).

* letter
A character belonging to one of the
following two sets:

Glossary 323

1. Uppercase letters: A, B, C, D, E, F, G,
H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
V, W, X, Y, Z

2. Lowercase letters: a, b, c, d, e, f, g, h, i,
j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y,
z

* level indicator
Two alphabetic characters that identify a
specific type of file or a position in a
hierarchy. The level indicators in the
DATA DIVISION are: CD, FD, and SD.

* level-number
A user-defined word, expressed as a two
digit number, which indicates the
hierarchical position of a data item or the
special properties of a data description
entry. Level-numbers in the range from 1
through 49 indicate the position of a data
item in the hierarchical structure of a
logical record. Level-numbers in the range
1 through 9 may be written either as a
single digit or as a zero followed by a
significant digit. Level-numbers 66, 77
and 88 identify special properties of a
data description entry.

* library-name
A user-defined word that names a
COBOL library that is to be used by the
compiler for a given source program
compilation.

* library text
A sequence of text words, comment lines,
the separator space, or the separator
pseudo-text delimiter in a COBOL library.

LILIAN DATE
The number of days since the beginning
of the Gregorian calendar. Day one is
Friday, October 15, 1582. The Lilian date
format is named in honor of Luigi Lilio,
the creator of the Gregorian calendar.

* LINAGE-COUNTER
A special register whose value points to
the current position within the page body.

link-edit
To create a loadable computer program by
means of a binder (linkage-editor).

LINKAGE SECTION
The section in the DATA DIVISION of the
called program that describes data items
available from the calling program. These
data items may be referred to by both the
calling and called program.

literal A character-string whose value is
specified either by the ordered set of
characters comprising the string, or by the
use of a figurative constant.

little-endian
Default format used by the PC to store
binary data. In this format, the most
significant digit is on the highest address.
Compare with “big-endian”.

local A set of attributes for a program
execution environment indicating
culturally sensitive considerations, such
as: character code page, collating
sequence, date/time format, monetary
value representation, numeric value
representation, or language.

local

* LOCAL-STORAGE SECTION
The section of the DATA DIVISION that
defines storage that is allocated and freed
on a per-invocation basis, depending on
the value assigned in their VALUE
clauses.

* logical operator
One of the reserved words AND, OR, or
NOT. In the formation of a condition,
either AND, or OR, or both can be used
as logical connectives. NOT can be used
for logical negation.

* logical record
The most inclusive data item. The
level-number for a record is 01. A record
may be either an elementary item or a
group of items. The term is synonymous
with record.

* low order end
The rightmost character of a string of
characters.

M

main program
The first routine in an enclave to gain
control from the invoker. In FORTRAN, a
main program does not have a
FUNCTION, SUBROUTINE, or BLOCK
DATA statement as its first statement. It
could have a PROGRAM statement as its
first statement. Contrast with
subprogram.

* mass storage
A storage medium in which data may be

324 Enterprise COBOL for z/OS, V5.2 Migration Guide

organized and maintained in both a
sequential and nonsequential manner.

* mass storage device
A device having a large storage capacity;
for example, magnetic disk, magnetic
drum.

* mass storage file
A collection of records that is assigned to
a mass storage medium.

* megabyte (M)
One megabyte equals 1,048,576 bytes.

* merge file
A collection of records to be merged by a
MERGE statement. The merge file is
created and can be used only by the
merge function.

method
Procedural code that defines one of the
operations supported by an object, and
that is executed by an INVOKE statement
on that object.

* Method Definition
The COBOL source unit that defines a
method.

* method identification entry
An entry in the METHOD-ID paragraph
of the IDENTIFICATION DIVISION
which contains clauses that specify the
method-name and assign selected
attributes to the method definition.

* method-name
A user-defined word that identifies a
method.

* mnemonic-name
A user-defined word that is associated in
the ENVIRONMENT DIVISION with a
specified implementor-name.

multitasking
Mode of operation that provides for the
concurrent, or interleaved, execution of
two or more tasks. When running under
the Language Environment product,
multitasking is synonymous with
multithreading.

MVS Multiple Virtual Storage operating system.

N

name A word composed of not more than 30
characters that defines a COBOL operand.

* native character set
The implementor-defined character set
associated with the computer specified in
the OBJECT-COMPUTER paragraph.

* native collating sequence
The implementor-defined collating
sequence associated with the computer
specified in the OBJECT-COMPUTER
paragraph.

* negated combined condition
The 'NOT' logical operator immediately
followed by a parenthesized combined
condition.

* negated simple condition
The 'NOT' logical operator immediately
followed by a simple condition.

nested program
In COBOL, a program that is directly
contained within another program.

* next executable sentence
The next sentence to which control will be
transferred after execution of the current
statement is complete.

* next executable statement
The next statement to which control will
be transferred after execution of the
current statement is complete.

* next record
The record that logically follows the
current record of a file.

* noncontiguous items
Elementary data items in the
WORKING-STORAGE and LINKAGE
SECTIONs that bear no hierarchic
relationship to other data items.

* nonnumeric item
A data item whose description permits its
content to be composed of any
combination of characters taken from the
computer's character set. Certain
categories of nonnumeric items may be
formed from more restricted character
sets.

* nonnumeric literal
A literal bounded by quotation marks.
The string of characters may include any
character in the computer's character set.

null Empty, having no meaning.

Glossary 325

* numeric character
A character that belongs to the following
set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric-edited item
A numeric item that is in such a form that
it may be used in printed output. It may
consist of external decimal digits from 0
through 9, the decimal point, commas, the
dollar sign, editing sign control symbols,
plus other editing symbols.

* numeric function
A function whose class and category are
numeric but which for some possible
evaluation does not satisfy the
requirements of integer functions.

* numeric item
A data item whose description restricts its
content to a value represented by
characters chosen from the digits from '0'
through '9'; if signed, the item may also
contain a '+', '-', or other representation of
an operational sign.

* numeric literal
A literal composed of one or more
numeric characters that may contain
either a decimal point, or an algebraic
sign, or both. The decimal point must not
be the rightmost character. The algebraic
sign, if present, must be the leftmost
character.

O

object An entity that has state (its data values)
and operations (its methods). An object is
a way to encapsulate state and behavior.

object code
Output from a compiler or assembler that
is itself executable machine code or is
suitable for processing to produce
executable machine code.

* OBJECT-COMPUTER
The name of an ENVIRONMENT
DIVISION paragraph in which the
computer environment, within which the
object program is executed, is described.

* object computer entry
An entry in the OBJECT-COMPUTER
paragraph of the ENVIRONMENT
DIVISION which contains clauses that
describe the computer environment in
which the object program is to be
executed.

object deck
A portion of an object program suitable as
input to a linkage-editor. Synonymous
with object module and text deck.

object module
A collection of one or more control
sections produced by an assembler or
compiler and used as input to the binder
(linkage-editor). Synonym for text deck or
object deck.

* object of entry
A set of operands and reserved words,
within a DATA DIVISION entry of a
COBOL program, that immediately
follows the subject of the entry.

* object program
A set or group of executable machine
language instructions and other material
designed to interact with data to provide
problem solutions. In this context, an
object program is generally the machine
language result of the operation of a
COBOL compiler on a source program.
Where there is no danger of ambiguity,
the word 'program' alone may be used in
place of the phrase 'object program.'

* object time
The time at which an object program is
executed. The term is synonymous with
execution time.

* obsolete element
A COBOL language element in Standard
COBOL that is to be deleted from the next
revision of Standard COBOL.

ODBC
Open Database Connectivity that provides
you access to data from a variety of
databases and file systems.

ODO object
In the example below,
WORKING-STORAGE SECTION
01 TABLE-1.

05 X PICS9.
05 Y OCCURS 3 TIMES

DEPENDING ON X PIC X.

X is the object of the OCCURS
DEPENDING ON clause (ODO object).
The value of the ODO object determines
how many of the ODO subject appear in
the table.

326 Enterprise COBOL for z/OS, V5.2 Migration Guide

ODO subject
In the example above, Y is the subject of
the OCCURS DEPENDING ON clause
(ODO subject). The number of Y ODO
subjects that appear in the table depends
on the value of X.

* open mode
The state of a file after execution of an
OPEN statement for that file and before
the execution of a CLOSE statement
without the REEL or UNIT phrase for that
file. The particular open mode is specified
in the OPEN statement as either INPUT,
OUTPUT, I-O or EXTEND.

* operand
Whereas the general definition of operand
is “that component which is operated
upon”, for the purposes of this document,
any lowercase word (or words) that
appears in a statement or entry format
may be considered to be an operand and,
as such, is an implied reference to the
data indicated by the operand.

* operational sign
An algebraic sign, associated with a
numeric data item or a numeric literal, to
indicate whether its value is positive or
negative.

* optional file
A file which is declared as being not
necessarily present each time the object
program is executed. The object program
causes an interrogation for the presence
or absence of the file.

* optional word
A reserved word that is included in a
specific format only to improve the
readability of the language and whose
presence is optional to the user when the
format in which the word appears is used
in a source program.

* output mode
The state of a file after execution of an
OPEN statement, with the OUTPUT or
EXTEND phrase specified, for that file
and before the execution of a CLOSE
statement without the REEL or UNIT
phrase for that file.

* output procedure
A set of statements to which control is
given during execution of a format 1
SORT statement after the sort function is

completed, or during execution of a
MERGE statement after the merge
function reaches a point at which it can
select the next record in merged order
when requested.

overflow condition
A condition that occurs when a portion of
the result of an operation exceeds the
capacity of the intended unit of storage.

P

packed decimal item
See “internal decimal item”.

* padding character
An alphanumeric character used to fill the
unused character positions in a physical
record.

page A vertical division of output data
representing a physical separation of such
data, the separation being based on
internal logical requirements or external
characteristics of the output medium.

* page body
That part of the logical page in which
lines can be written or spaced.

* paragraph
In the PROCEDURE DIVISION, a
paragraph-name followed by a separator
period and by zero, one, or more
sentences. In the IDENTIFICATION and
ENVIRONMENT DIVISION, a paragraph
header followed by zero, one, or more
entries.

* paragraph header
A reserved word, followed by the
separator period, that indicates the
beginning of a paragraph in the
IDENTIFICATION and ENVIRONMENT
DIVISION. The permissible paragraph
headers in the IDENTIFICATION
DIVISION are:
PROGRAM-ID. (Program ID DIVISION)
CLASS-ID. (Class ID DIVISION)
METHOD-ID. (Method ID DIVISION)
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the
ENVIRONMENT DIVISION are:

Glossary 327

|
|

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
REPOSITORY. (Program or Class

CONFIGURATION SECTION)
FILE-CONTROL.
I-O-CONTROL.

* paragraph-name
A user-defined word that identifies and
begins a paragraph in the PROCEDURE
DIVISION.

parameter
Data items that are received by a routine.
The term used in certain other languages
for the FORTRAN term dummy
argument.

password
A unique string of characters that a
program, computer operator, or user must
supply to meet security requirements
before gaining access to data.

* phrase
A phrase is an ordered set of one or more
consecutive COBOL character-strings that
form a portion of a COBOL procedural
statement or of a COBOL clause.

* physical record
See “block”.

pointer data item
A data item in which address values can
be stored. Data items are explicitly
defined as pointers with the USAGE IS
POINTER clause. ADDRESS OF special
registers are implicitly defined as pointer
data items. Pointer data items can be
compared for equality or moved to other
pointer data items.

portability
The ability to transfer an application
program from one application platform to
another with relatively few changes to the
source program.

preloaded
In COBOL this refers to COBOL programs
that remain resident in storage under IMS
instead of being loaded each time they
are called.

* prime record key
A key whose contents uniquely identify a
record within an indexed file.

* priority-number
A user-defined word which classifies

sections in the PROCEDURE DIVISION
for purposes of segmentation.
Segment-numbers may contain only the
characters '0','1', ... , '9'. A
segment-number may be expressed either
as a one- or two-digit number.

* procedure
In COBOL, a procedure is a paragraph or
section that can only be performed from
within the program. In PL/I, a named
block of code that can be invoked
externally, usually via a call..

* procedure branching statement
A statement that causes the explicit
transfer of control to a statement other
than the next executable statement in the
sequence in which the statements are
written in the source program. The
procedure branching statements are:
ALTER, CALL, EXIT, EXIT PROGRAM,
GO TO, MERGE, (with the OUTPUT
PROCEDURE phrase), PERFORM and
SORT (with the INPUT PROCEDURE or
OUTPUT PROCEDURE phrase).

PROCEDURE DIVISION
One of the four main component parts of
a COBOL program, class definition, or
method definition. The PROCEDURE
DIVISION contains instructions for
solving a problem. The Program and
Method Procedure Divisions may contain
imperative statements, conditional
statements, compiler-directing statements,
paragraphs, procedures, and sections. The
Class Procedure Division contains only
method definitions.

procedure integration
One of the functions of the COBOL
optimizer is to simplify calls to performed
procedures or contained programs.

PERFORM procedure integration is the
process whereby a PERFORM statement is
replaced by its performed procedures.
Contained program procedure integration
is the process where a CALL to a
contained program is replaced by the
program code.

* procedure-name
A user-defined word that is used to name
a paragraph or section in the
PROCEDURE DIVISION. It consists of a
paragraph-name (which may be qualified)
or a section-name.

328 Enterprise COBOL for z/OS, V5.2 Migration Guide

procedure-pointer data item
A data item in which a pointer to an
entry point can be stored. A data item
defined with the USAGE IS
PROCEDURE-POINTER clause contains
the address of a procedure entry point.

* program identification entry
An entry in the PROGRAM-ID paragraph
of the IDENTIFICATION DIVISION
which contains clauses that specify the
program-name and assign selected
program attributes to the program.

program-name
In the IDENTIFICATION DIVISION and
the end program marker, a user-defined
word or alphanumeric literal that
identifies a COBOL source program.

* pseudo-text
A sequence of text words, comment lines,
or the separator space in a source
program or COBOL library bounded by,
but not including, pseudo-text delimiters.

* pseudo-text delimiter
Two contiguous equal sign characters (==)
used to delimit pseudo-text.

* punctuation character
A character that belongs to the following
set:

Character
Meaning

, comma

; semicolon

: colon

. period (full stop)

" quotation mark

(left parenthesis

) right parenthesis

? space

= equal sign

Q

QSAM (Queued Sequential Access Method)
An extended version of the basic
sequential access method (BSAM). When
this method is used, a queue is formed of
input data blocks that are awaiting
processing or of output data blocks that

have been processed and are awaiting
transfer to auxiliary storage or to an
output device.

* qualified data-name
An identifier that is composed of a
data-name followed by one or more sets
of either of the connectives OF and IN
followed by a data-name qualifier.

* qualifier

1. A data-name or a name associated
with a level indicator which is used in
a reference either together with
another data-name which is the name
of an item that is subordinate to the
qualifier or together with a
condition-name.

2. A section-name that is used in a
reference together with a
paragraph-name specified in that
section.

3. A library-name that is used in a
reference together with a text-name
associated with that library.

R

* random access
An access mode in which the
program-specified value of a key data
item identifies the logical record that is
obtained from, deleted from, or placed
into a relative or indexed file.

* record
See “logical record”.

* record area
A storage area allocated for the purpose
of processing the record described in a
record description entry in the FILE
SECTION of the DATA DIVISION. In the
FILE SECTION, the current number of
character positions in the record area is
determined by the explicit or implicit
RECORD clause.

* record description
See “record description entry”.

* record description entry
The total set of data description entries
associated with a particular record. The
term is synonymous with record
description.

recording mode
The format of the logical records in a file.

Glossary 329

Recording mode can be F (fixed-length), V
(variable-length), S (spanned), or U
(undefined).

record key
A key whose contents identify a record
within an indexed file.

* record-name
A user-defined word that names a record
described in a record description entry in
the DATA DIVISION of a COBOL
program.

* record number
The ordinal number of a record in the file
whose organization is sequential.

recursion
A program calling itself or being directly
or indirectly called by a one of its called
programs.

recursively capable
A program is recursively capable (can be
called recursively) if the RECURSIVE
attribute is on the PROGRAM-ID
statement.

reel A discrete portion of a storage medium,
the dimensions of which are determined
by each implementor that contains part of
a file, all of a file, or any number of files.
The term is synonymous with unit and
volume.

reentrant
The attribute of a program or routine that
allows more than one user to share a
single copy of a program object.

* reference format
A format that provides a standard method
for describing COBOL source programs.

reference modification
A method of defining a new
alphanumeric data item by specifying the
leftmost character and length relative to
the leftmost character of another
alphanumeric data item.

* reference-modifier
A syntactically correct combination of
character-strings and separators that
defines a unique data item. It includes a
delimiting left parenthesis separator, the
leftmost character position, a colon
separator, optionally a length, and a
delimiting right parenthesis separator.

* relation
See “relational operator” or “relation
condition”.

* relational operator
A reserved word, a relation character, a
group of consecutive reserved words, or a
group of consecutive reserved words and
relation characters used in the
construction of a relation condition. The
permissible operators and their meanings
are:

Operator
Meaning

IS GREATER THAN
Greater than

IS > Greater than

IS NOT GREATER THAN
Not greater than

IS NOT >
Not greater than

IS LESS THAN
Less than

IS < Less than

IS NOT LESS THAN
Not less than

IS NOT <
Not less than

IS EQUAL TO
Equal to

IS = Equal to

IS NOT EQUAL TO
Not equal to

IS NOT =
Not equal to

IS GREATER THAN OR EQUAL TO
Greater than or equal to

IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO
Less than or equal to

IS <= Less than or equal to

330 Enterprise COBOL for z/OS, V5.2 Migration Guide

* relation character
A character that belongs to the following
set:

Character
Meaning

> greater than

< less than

= equal to

* relation condition
The proposition, for which a truth value
can be determined, that the value of an
arithmetic expression, data item,
nonnumeric literal, or index-name has a
specific relationship to the value of
another arithmetic expression, data item,
nonnumeric literal, or index name. (See
also “relational operator”.)

* relative file
A file with relative organization.

* relative key
A key whose contents identify a logical
record in a relative file.

* relative organization
The permanent logical file structure in
which each record is uniquely identified
by an integer value greater than zero,
which specifies the record's logical ordinal
position in the file.

* relative record number
The ordinal number of a record in a file
whose organization is relative. This
number is treated as a numeric literal
which is an integer.

* reserved word
A COBOL word specified in the list of
words that may be used in a COBOL
source program, but that must not appear
in the program as user-defined words or
system-names.

* resource
A facility or service, controlled by the
operating system, that can be used by an
executing program.

* resultant identifier
A user-defined data item that is to contain
the result of an arithmetic operation.

reusable environment
A reusable environment is when you

establish an assembler program as the
main program by using either ILBOSTP0
programs, IGZERRE programs, or the
RTEREUS runtime option.

routine
A set of statements in a COBOL program
that causes the computer to perform an
operation or series of related operations.
In Language Environment, refers to either
a procedure, function, or subroutine.

* routine-name
A user-defined word that identifies a
procedure written in a language other
than COBOL.

* run time
The time at which an object program is
executed. The term is synonymous with
object time.

runtime environment
The environment in which a COBOL
program executes.

* run unit
One or more object programs that are
executed together. In Language
Environment, a run unit is the equivalent
of an enclave.

S

SBCS (Single Byte Character Set)
See “Single Byte Character Set (SBCS)”.

scope terminator
A COBOL reserved word that marks the
end of certain PROCEDURE DIVISION
statements. It may be either explicit
(END-ADD, for example) or implicit
(separator period). A variable at the end
of a statement.

* section
A set of zero, one or more paragraphs or
entities, called a section body, the first of
which is preceded by a section header.
Each section consists of the section header
and the related section body.

* section header
A combination of words followed by a
separator period that indicates the
beginning of a section in the
ENVIRONMENT, DATA, and
PROCEDURE DIVISION. In the
ENVIRONMENT and DATA DIVISION, a
section header is composed of reserved

Glossary 331

words followed by a separator period.
The permissible section headers in the
ENVIRONMENT DIVISION are:
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the
DATA DIVISION are:
FILE SECTION.
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

In the PROCEDURE DIVISION, a section
header is composed of a section-name,
followed by the reserved word SECTION,
followed by a separator period.

* section-name
A user-defined word that names a section
in the PROCEDURE DIVISION.

selection structure
A program processing logic in which one
or another series of statements is
executed, depending on whether a
condition is true or false.

* sentence
A sequence of one or more statements, the
last of which is terminated by a separator
period.

* separately compiled program
A program which, together with its
contained programs, is compiled
separately from all other programs.

* separator
A character or two contiguous characters
used to delimit character-strings.

* separator comma
A comma (,) followed by a space used to
delimit character-strings.

* separator period
A period (.) followed by a space used to
delimit character-strings.

* separator semicolon
A semicolon (;) followed by a space used
to delimit character-strings.

sequence structure
A program processing logic in which a
series of statements is executed in
sequential order.

* sequential access
An access mode in which logical records

are obtained from or placed into a file in
a consecutive predecessor-to-successor
logical record sequence determined by the
order of records in the file.

* sequential file
A file with sequential organization.

* sequential organization
The permanent logical file structure in
which a record is identified by a
predecessor-successor relationship
established when the record is placed into
the file.

serial search
A search in which the members of a set
are consecutively examined, beginning
with the first member and ending with
the last.

* 77-level-description-entry
A data description entry that describes a
noncontiguous data item with the
level-number 77.

* sign condition
The proposition, for which a truth value
can be determined, that the algebraic
value of a data item or an arithmetic
expression is either less than, greater than,
or equal to zero.

* simple condition
Any single condition chosen from the set:

Relation condition
Class condition
Condition-name condition
Switch-status condition
Sign condition

Single Byte Character Set (SBCS)
A set of characters in which each
character is represented by a single byte.
See also "EBCDIC (Extended
Binary-Coded Decimal Interchange
Code)."

slack bytes
Bytes inserted between data items or
records to ensure correct alignment of
some numeric items. Slack bytes contain
no meaningful data. In some cases, they
are inserted by the compiler; in others, it
is the responsibility of the programmer to
insert them. The SYNCHRONIZED clause
instructs the compiler to insert slack bytes
when they are needed for proper

332 Enterprise COBOL for z/OS, V5.2 Migration Guide

alignment. Slack bytes between records
are inserted by the programmer.

* sort file
A collection of records to be sorted by a
format 1 SORT statement. The sort file is
created and can be used by the sort
function only.

* sort-merge file description entry
An entry in the FILE SECTION of the
DATA DIVISION that is composed of the
level indicator SD, followed by a
file-name, and then followed by a set of
file clauses as required.

* SOURCE-COMPUTER
The name of an ENVIRONMENT
DIVISION paragraph in which the
computer environment, within which the
source program is compiled, is described.

* source computer entry
An entry in the SOURCE-COMPUTER
paragraph of the ENVIRONMENT
DIVISION which contains clauses that
describe the computer environment in
which the source program is to be
compiled.

* source item
An identifier designated by a SOURCE
clause that provides the value of a
printable item.

source program
Although it is recognized that a source
program may be represented by other
forms and symbols, in this information it
always refers to a syntactically correct set
of COBOL statements. A COBOL source
program commences with the
IDENTIFICATION DIVISION or a COPY
statement. A COBOL source program is
terminated by the end program marker, if
specified, or by the absence of additional
source program lines. A source program
contains a set of instructions written in a
programming language that must be
translated to machine language before the
program can be run.

special character
A character that belongs to the following
set:

Character
Meaning

+ plus sign

- minus sign (hyphen)

* asterisk

/ slant (forward slash)

= equal sign

$ currency sign

, comma

; semicolon

. period (decimal point, full stop)

" quotation mark

' apostrophe

(left parenthesis

) right parenthesis

> greater than

< less than

: colon

_ underscore

*> floating comment indicator

* special-character word
A reserved word that is an arithmetic
operator or a relation character.

SPECIAL-NAMES
The name of an ENVIRONMENT
DIVISION paragraph in which
environment-names are related to
user-specified mnemonic-names.

* special names entry
An entry in the SPECIAL-NAMES
paragraph of the ENVIRONMENT
DIVISION which provides means for
specifying the currency sign; choosing the
decimal point; specifying symbolic
characters; relating implementor-names to
user-specified mnemonic-names; relating
alphabet-names to character sets or
collating sequences; and relating
class-names to sets of characters.

* special registers
Certain compiler generated storage areas
whose primary use is to store information
produced in conjunction with the use of a
specific COBOL feature.

* standard data format
The concept used in describing the
characteristics of data in a COBOL DATA

Glossary 333

|

DIVISION under which the characteristics
or properties of the data are expressed in
a form oriented to the appearance of the
data on a printed page of infinite length
and breadth, rather than a form oriented
to the manner in which the data is stored
internally in the computer, or on a
particular external medium.

* statement
A syntactically valid combination of
words, literals, and separators, beginning
with a verb, written in a COBOL source
program.

STL STL File System: native workstation and
PC file system for COBOL and PL/I.
Supports sequential, relative, and indexed
files, including the full ANSI 85 COBOL
standard I/O language and all of the
extensions described in the COBOL
Language Reference, unless exceptions are
explicitly noted.

structured programming
A technique for organizing and coding a
computer program in which the program
comprises a hierarchy of segments, each
segment having a single entry point and a
single exit point. Control is passed
downward through the structure without
unconditional branches to higher levels of
the hierarchy.

* subclass
A class that inherits from another class.
When two classes in an inheritance
relationship are considered together, the
subclass is the inheritor or inheriting
class; the superclass is the inheritee or
inherited class.

* subject of entry
An operand or reserved word that
appears immediately following the level
indicator or the level-number in a DATA
DIVISION entry.

* subprogram
See “called program”.

* subscript
An occurrence number represented by
either an integer, a data-name optionally
followed by an integer with the operator
+ or -, or an index-name optionally
followed by an integer with the operator
+ or -, that identifies a particular element
in a table. A subscript may be the word

ALL when the subscripted identifier is
used as a function argument for a
function allowing a variable number of
arguments.

* subscripted data-name
An identifier that is composed of a
data-name followed by one or more
subscripts enclosed in parentheses.

* superclass
A class that is inherited by another class.
See also subclass.

switch-status condition
The proposition, for which a truth value
can be determined, that an UPSI switch,
capable of being set to an 'on' or 'off'
status, has been set to a specific status.

* symbolic-character
A user-defined word that specifies a
user-defined figurative constant.

syntax The rules governing the structure of a
programming language and the
construction of a statement in a
programming language.

T

* table
A set of logically consecutive items of
data that are defined in the DATA
DIVISION by means of the OCCURS
clause.

* table element
A data item that belongs to the set of
repeated items comprising a table.

text deck
Synonym for object deck or object module.

* text-name
A user-defined word that identifies library
text.

* text word
A character or a sequence of contiguous
characters between margin A and margin
R in a COBOL library, source program, or
in pseudo-text which is:
v A separator, except for: space; a

pseudo-text delimiter; and the opening
and closing delimiters for nonnumeric
literals. The right parenthesis and left
parenthesis characters, regardless of
context within the library, source
program, or pseudo-text, are always
considered text words.

334 Enterprise COBOL for z/OS, V5.2 Migration Guide

v A literal including, in the case of
nonnumeric literals, the opening
quotation mark and the closing
quotation mark that bound the literal.

v Any other sequence of contiguous
COBOL characters except comment
lines and the word 'COPY' bounded by
separators that are neither a separator
nor a literal.

top-down design
The design of a computer program using
a hierarchic structure in which related
functions are performed at each level of
the structure.

top-down development
See “structured programming”.

trailer-label
(1) A file or data set label that follows the
data records on a unit of recording
medium. (2) Synonym for end-of-file
label.

* truth value
The representation of the result of the
evaluation of a condition in terms of one
of two values: true or false.

U

* unary operator
A plus (+) or a minus (-) sign, that
precedes a variable or a left parenthesis in
an arithmetic expression and that has the
effect of multiplying the expression by +1
or -1, respectively.

unit A module of direct access, the dimensions
of which are determined by IBM.

universal object reference
A data-name that can refer to an object of
any class.

unpacked decimal format
A format for representing numbers in
which the digit is contained in bits 4
through 7 and the sign is contained in
bits 0 through 3 of the rightmost byte.
Bits 0 through 3 of all other bytes contain
1s (hex F). For example, the decimal value
of +123 is represented as 1111 0001 1111
0010 1111 0011. Synonymous with zoned
decimal format.

* unsuccessful execution
The attempted execution of a statement
that does not result in the execution of all

the operations specified by that statement.
The unsuccessful execution of a statement
does not affect any data referenced by
that statement, but may affect status
indicators.

UPSI switch
A program switch that performs the
functions of a hardware switch. Eight are
provided: UPSI-0 through UPSI-7.

* user-defined word
A COBOL word that must be supplied by
the user to satisfy the format of a clause
or statement.

V

* variable
A data item whose value may be changed
by execution of the object program. A
variable used in an arithmetic expression
must be a numeric elementary item.

* variable-length record
A record associated with a file whose file
description or sort-merge description
entry permits records to contain a varying
number of character positions.

* variable occurrence data item
A variable occurrence data item is a table
element which is repeated a variable
number of times. Such an item must
contain an OCCURS DEPENDING ON
clause in its data description entry, or be
subordinate to such an item.

* variably located group.
A group item following, and not
subordinate to, a variable-length table in
the same level-01 record.

* variably located item.
A data item following, and not
subordinate to, a variable-length table in
the same level-01 record.

* verb A word that expresses an action to be
taken by a COBOL compiler or object
program.

volume
A certain portion of data, together with its
data carrier, that can be handled
conveniently as a unit. A data carrier
mounted and demounted as a unit; for
example, a reel of magnetic tape, a disk
pack.

Glossary 335

volume switch procedures
System specific procedures executed
automatically when the end of a unit or
reel has been reached before end-of-file
has been reached.

VSAM (Virtual Storage Access Method)
A high-performance mass storage access
method. Three types of data organization
are available: entry sequenced data sets
(ESDS), key sequenced data sets (KSDS),
and relative record data sets (RRDS).
Their COBOL equivalents are,
respectively: sequential, indexed, and
relative organizations.

W

* word
A character-string of not more than 30
characters which forms a user-defined
word, a system-name, a reserved word, or
a function-name.

* WORKING-STORAGE SECTION
The section of the DATA DIVISION that
describes working storage data items,
composed either of noncontiguous items
or working storage records or of both.

X

XML Extensible Markup Language. A standard
metalanguage for defining markup
languages that was derived from and is a
subset of SGML. XML omits the more
complex and less-used parts of SGML and
makes it much easier to write applications
to handle document types, author and
manage structured information, and
transmit and share structured information
across diverse computing systems. The
use of XML does not require the robust
applications and processing that is
necessary for SGML. XML is developed
under the auspices of the World Wide
Web Consortium (W3C).

XML data
Data that is organized into a hierarchical
structure with XML elements. The data
definitions are defined in XML element
type declarations.

XML declaration
XML text that specifies characteristics of
the XML document such as the version of
XML being used and the encoding of the
document.

XML document
A data object that is well formed as
defined by the W3C XML specification.

XML namespace
A mechanism, defined by the W3C XML
Namespace specifications, that limits the
scope of a collection of element names
and attribute names. A uniquely chosen
XML namespace ensures the unique
identity of an element name or attribute
name across multiple XML documents or
multiple contexts within an XML
document.

XML schema
A mechanism, defined by the W3C, for
describing and constraining the structure
and content of XML documents. An XML
schema, which is itself expressed in XML,
effectively defines a class of XML
documents of a given type, for example,
purchase orders.

year 2000 problem
The Year 2000 problem refers to the
limitation of 2-digit year date fields that
were used to save storage in the 1960s
and 1970s. For example, it is not possible
to compute the age of someone who is
older than 100 years with 2-digit year
date fields, and on 1/1/2000, the current
date will not be greater than the previous
day's date. Because so many applications
and data have only 2-digit year data, they
must all be changed before the year 2000
to avoid failure.

Z

zoned decimal format
Synonym for unpacked decimal format.

zoned decimal item
See “external decimal item”.

#

85 COBOL Standard
The COBOL language defined by the
following standards:
v ANSI INCITS 23-1985, Programming

languages - COBOL, as amended by
ANSI INCITS 23a-1989, Programming
Languages - COBOL - Intrinsic Function
Module for COBOL and ANSI INCITS
23b-1993, Programming Languages -
Correction Amendment for COBOL

336 Enterprise COBOL for z/OS, V5.2 Migration Guide

|

|
|
|

|
|
|
|
|
|
|

v ISO 1989:1985, Programming languages -
COBOL, as amended by ISO/IEC
1989/AMD1:1992, Programming languages
- COBOL: Intrinsic function module and
ISO/IEC 1989/AMD2:1994, Programming
languages - Correction and clarification
amendment for COBOL

2002 COBOL Standard
The COBOL language defined by the
following standards:
v INCITS/ISO/IEC 1989-2002,

Information Technology - Programming
Languages - COBOL

v ISO/IEC 1989:2002, Information
technology -- Programming languages
-- COBOL

Glossary 337

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

338 Enterprise COBOL for z/OS, V5.2 Migration Guide

List of resources

IBM Enterprise COBOL for z/OS
You can find the following publications in the
Enterprise COBOL for z/OS library:
v Customization Guide, SC14-7380
v Language Reference, SC14-7381
v Programming Guide, SC14-7382
v Migration Guide, GC14-7383
v Program Directory, GI11-9180
v Licensed Program Specifications, GI11-9181

Related publications
z/OS library publications

You can find the following publications in the
z/OS Internet Library.

Run-Time Library Extensions

v DWARF/ELF Extensions Library Reference

v Common Debug Architecture Library Reference

v Common Debug Architecture User’s Guide

z/Architecture

v Principles of Operation

z/OS DFSMS

v Access Method Services for Catalogs

v Checkpoint/Restart

v Macro Instructions for Data Sets

v Using Data Sets

v Utilities

z/OS DFSORT

v Application Programming Guide

v Installation and Customization

z/OS ISPF

v Dialog Developer's Guide and Reference

v User's Guide Vol I

v User's Guide Vol II

z/OS Language Environment

v Concepts Guide

v Customization

v Debugging Guide

v Programming Guide

v Programming Reference

v Run-Time Messages

v Run-Time Application Migration Guide

v Writing Interlanguage Communication Applications

z/OS MVS

v JCL Reference

v JCL User's Guide

v Program Management: User's Guide and Reference

v System Commands

v z/OS Unicode Services User's Guide and Reference

v z/OS XML System Services User's Guide and
Reference

z/OS TSO/E

v Command Reference

v Primer

v User's Guide

z/OS UNIX System Services

v Command Reference

v Programming: Assembler Callable Services
Reference

v User's Guide

z/OS XL C/C++

v Programming Guide

v Run-Time Library Reference

CICS Transaction Server for z/OS

You can find the following publications in the
CICS Library:
v Application Programming Guide

v Application Programming Reference

v Customization Guide

v External Interfaces Guide

DB2 for z/OS

You can find the following publications in the
DB2 Library:
v Application Programming and SQL Guide

© Copyright IBM Corp. 1991, 2019 339

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/systems/z/os/zos/library/bkserv/
http://www.ibm.com/software/htp/cics/library/
http://www.ibm.com/support/docview.wss?uid=swg27019288

v Command Reference

v SQL Reference

Debug Tool

You can find the following publications in the
Debug Tool Library:
v Reference and Messages

v User's Guide

You can find the following publications by
searching their publication numbers in the IBM
Publications Center.

COBOL Report Writer Precompiler
v Programmer's Manual, SC26-4301

IMS
v Application Programming API Reference,

SC18-9699
v Application Programming Guide, SC18-9698

Softcopy publications for z/OS

The following collection kit contains z/OS and
related product publications:
v z/OS CD Collection Kit, SK3T-4269

Java
v IBM SDK for Java - Tools Documentation,

publib.boulder.ibm.com/infocenter/javasdk/
tools/index.jsp

v The Java 2 Enterprise Edition Developer's Guide,
download.oracle.com/javaee/1.2.1/devguide/
html/DevGuideTOC.html

v Java 2 SDK, Standard Edition Documentation,
download.oracle.com/javase/1.4.2/docs/

v The Java EE 5 Tutorial, download.oracle.com/
javaee/5/tutorial/doc/

v The Java Language Specification, Third Edition, by
Gosling et al., java.sun.com/docs/books/jls/

v The Java Native Interface, download.oracle.com/
javase/1.5.0/docs/guide/jni/

v Java Technology Edition SDK User Guides,
www.ibm.com/developerworks/java/jdk/aix/
service.html

Unicode and character representation
v Unicode, www.unicode.org/
v Character Data Representation Architecture

Reference and Registry, SC09-2190

XML
v Extensible Markup Language (XML),

www.w3.org/XML/
v Namespaces in XML 1.0, www.w3.org/TR/xml-

names/
v Namespaces in XML 1.1, www.w3.org/TR/xml-

names11/
v XML specification, www.w3.org/TR/xml/

340 Enterprise COBOL for z/OS, V5.2 Migration Guide

http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp
http://publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://download.oracle.com/javase/1.4.2/docs/
http://download.oracle.com/javaee/5/tutorial/doc/
http://download.oracle.com/javaee/5/tutorial/doc/
http://java.sun.com/docs/books/jls/
http://download.oracle.com/javase/1.5.0/docs/guide/jni/
http://download.oracle.com/javase/1.5.0/docs/guide/jni/
http://www.ibm.com/developerworks/java/jdk/aix/service.html
http://www.ibm.com/developerworks/java/jdk/aix/service.html
http://www.unicode.org/
http://www.w3.org/XML/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml/

Index

Special characters
/ (slash) in CURRENCY-SIGN clause

changed 74
* (asterisk) 63

Numerics
64-bit addressing 231
68 COBOL Standard 45
85 COBOL Standard

interpretation changes 91
tools for converting source programs

to 249

A
A in PICTURE clause 124
abbreviated combined relation conditions

parenthesis evaluation changed 62
abends

OCx, caused by unsupported
calls 259

U3504, caused by unsupported
calls 259

ACCEPT statement
keyword FROM requirements 63
system input devices for

mnemonic-name suboption 93
access JCL parameters

CEE3PR2 295
coding 295
LINKAGE SECTION 295

accessibility
keyboard navigation xxxii
of Enterprise COBOL xxxi
of this information xxxii
using of Enterprise COBOLEnterprise

COBOL xxxi
using z/OS xxxi

ACTUAL KEY clause 55
advantages of new compiler and run

time 7
AFTER phrase of PERFORM 80
ALPHABET clause 71, 109
ALPHABETIC class 71, 109
AMODE considerations 197
ANALYZE compiler option

not available in Enterprise
COBOL 145

applications
taking an inventory of (source) 29

APPLY CORE-INDEX clause 55
APPLY RECORD-OVERFLOW clause 55
APPLY REORG-CRITERIA clause 55
Area A, periods in 66, 95
ARITH compiler option

for converted IBM COBOL
programs 143

arithmetic accuracy 71
ASCII data set 286

ASRA abend failure symptom 259
assembler driver 260
assembler programs

call considerations
supported calls under CICS 259
supported calls under

non-CICS 258
changing program mask 260
loading and BALRing COBOL 261
loading and deleting COBOL 261
paragraph name restrictions 72
saving and restoring high halves of

GPRs 262
ASSIGN ... FOR MULTIPLE REEL/UNIT

phrase 56
ASSIGN ... OR clause 56
ASSIGN clause 71
ASSIGN TO integer system-name

clause 56
assistive technologies xxxii
asterisk (*) 63

B
B in PICTURE clause 71, 124
BATCH compiler option 88
BDAM files 55
benefits of new compiler and run time 7
binder 229

overriding 289
binding 182
BLANK WHEN ZERO clause 63
BLL cells

automated conversion of 254
BUF compiler option 87
buffer size specification 87
BUFSIZE compiler option

for converted OS/VS COBOL
programs 87

C
CALL statement

changes for USING phrase 72
ON OVERFLOW,

CMPR2/NOCMPR2 110
callable services

CEETEST 201
calls

dynamic to alternate entry points 74
SOM services, to 141
supported

under CICS 259
under non-CICS 258

CCCA conversion tool
BDAM file conversion 55
brief description 52
detailed description 253
ISAM file conversion 54
reserved words 94, 106

CD FOR INITIAL INPUT 56
CEETEST callable service 201
changes to compiler, summary xvii
CICS

call considerations
supported under Language

Environment 259
converting source programs

automatically (CCCA) 254
DATE special register 56

effect of TRUNC compiler
option 212

integrated translator 212
migrating separate translator to

integrated translator 212
OS/VS COBOL programs, support

for 45, 209
required compiler options

CICS 211
NODYNAM 211
RENT 211

CICS compiler option 13, 211, 213
CICS integrated translator 212

benefits of 212
CBL/PROCESS statements,

considerations for 212
comment lines, considerations

for 212
DFHCOMMAREA

considerations 212
migrating from separate

translator 212
TRUNC compiler option

considerations 213
CLOSE statement

DISP phrase unsupported 56
FOR REMOVAL phrase 63
POSITIONING phrase 56

CMPR2 116
CMPR2 compiler option

ALPHABET clause 109
ALPHABETIC class 109
CALL...ON OVERFLOW class 110
COPY statement 114
COPY...REPLACING statement 112
definition for 107
EXIT PROGRAM 117
file status codes 115
for converted VS COBOL II

programs 98
language differences from

NOCMPR2 108
not available with Enterprise

COBOL 14
PERFORM statement 120
PERFORM...VARYING...AFTER 122
PICTURE clause 124
PROGRAM COLLATING

SEQUENCE 126
READ INTO and RETURN

INTO 127

© Copyright IBM Corp. 1991, 2019 341

CMPR2 compiler option (continued)
RECORD CONTAINS n

CHARACTERS 128
scaled integers and nonnumerics 111
SET...TO TRUE 129
SIZE ERROR on MULTIPLY and

DIVIDE 131
UNSTRING statement 132
upgrading programs compiled

with 107
upgrading VS COBOL II programs

compiled with 91
UPSI switches 138
variable-length group moves 139
variable-length records 129

COBOL
and Java

compatibility 232
COBOL and CICS/VS Command Level

Conversion Aid
detailed description 253
ISAM file conversion 54

COBOL applications
taking an inventory of (source) 30

COBOL for MVS & VM
upgrading to Enterprise COBOL 101

COBOL for OS/390 & VM
upgrading to Enterprise COBOL 101

COBOL/370
upgrading to Enterprise COBOL 101

CODE-SET clause, FS 39 285
comment lines

in VS COBOL II programs 92
Commonly asked questions 227
communication feature 55
comparing group to numeric

packed-decimal item 63
compatibility

Java and COBOL 232
object-oriented syntax 232

compilation
Report Writer programs 53

compiler limits 281
compiler options

complete list 263
for compiling VS COBOL II

programs 97
for converted OS/VS COBOL

programs 87
for OS/VS COBOL, not

supported 88
for SOM-based object-oriented

COBOL, not supported 141
required for CICS integrated

translator 213
upgrading from IBM COBOL 143

complexity ratings
conversion priorities relating to 32
conversion priority 30

conversion priority
complexity ratings relating to 32

conversion tools
CICS Application Migration Aid 28
CMPR2 compiler option 28
COBOL Conversion Tool (CCCA) 28,

52, 253

conversion tools (continued)
Debug Tool Load Module

Analyzer 256
FLAGMIG compiler option 28
FLAGMIG4 compiler option 28
free COBOL Analyzer 256
MIGR compiler option 28, 53, 249
NOCOMPILE compiler option 28
Report Writer Precompiler 28, 255

converting source
IBM COBOL programs,

requiring 101
scenarios

Report Writer discarded 37
Report Writer retained 38
with CICS 35
without CICS or report writer 34

tasks when updating 39
COPY statement 74
COPY statement, using @, #, $ 114
COPY...REPLACING statement 112
COUNT compiler option 88
CURRENCY-SIGN clause 74
CURRENT-DATE special register 56

D
DATA DIVISION, two periods in a

row 66
data-name, unique compared to

program-id 67
DATA(24) compiler option

or converted OS/VS COBOL
programs 87

DATE FORMAT language elements
support removed 166

DATE special register 56
DB2

coprocessor considerations 217
coprocessor integration 215
coprocessor migration 220
coprocessor, benefits of 215
separate precompiler 215

debug information changes 159, 168,
189, 202

Debug Tool 5, 202
Debug Tool Load Module Analyzer 256
debugging 159, 168, 189, 202

full screen mode 206
initiating the Debug Tool 201
remote mode 207

DEBUGGING declarative 83
decimal overflow, program mask

and 260
declaratives

changes to LABEL declarative
support 173

debugging changes 83
GIVING phrase of ERROR 58

DFHCOMMAREA
integrated CICS translator,

considerations for 212
DIAGTRUNC compiler option

for converted OS/VS COBOL
programs 87

disability xxxi
DISP phrase of CLOSE 56

DISPLAY statement 57
DIVIDE statement 79, 131
dynamic calls

CICS considerations
supported under Language

Environment 259
placed to alternate entry points 74
supported under non-CICS under

Language Environment 258

E
education

available for Enterprise COBOL 28
enclave boundary with assembler

programs 257
ENDJOB compiler option 88
Enterprise COBOL

advantages of 7
changes with 14
compiler options, complete list 263
compiler options, unsupported 97
high level overview 5
installing, documentation needed 27
JCL changes 181
logical record length 94
prolog format changes 89
reserved words, complete list 233
upgrading IBM COBOL programs

to 16
upgrading VS COBOL II programs

to 15
user-written condition handlers

restrictions 181
Enterprise COBOL compiler limits 281
Enterprise COBOL programs

existing applications, adding to 195
Enterprise COBOL, upgrading OS/VS

COBOL programs to 15
ENTRY points 74
ENVIRONMENT DIVISION, two periods

in a row 66
ERRCOUNT 230
errors

subscripts out of range message 83
evaluation changes in relation

conditions 73
EVENTS compiler option

not available in Enterprise
COBOL 145

EXAMINE statement 57
EXEC CICS LINK

support under Language
Environment 259

EXEC CICS statement 213
EXEC DLI statement 213
EXHIBIT statement 57
existing applications

adding Enterprise COBOL programs
to 195

preventing file status 39 285
EXIT PROGRAM statement 74

differences between CMPR2 and
NOCMPR2 117

exponent underflow, program mask
and 260

exponentiation changes 71

342 Enterprise COBOL for z/OS, V5.2 Migration Guide

Extended Link Pack Area (ELPA) 213
extensions, undocumented 62, 95
External names, changed in Enterprise

COBOL 141

F
FAQ 227
FD support in REDEFINES clause 68
FDUMP compiler option

mapped to TEST 98
file status 39

avoiding when processing new
files 286

preventing for QSAM files 285
preventing for VSAM files 59

FILE STATUS clause 75
file status code

39 96, 105, 155
file status codes, CMPR2/

NOCMPR2 115
FILE-CONTROL paragraph

FILE STATUS clause changed 75
FILE-LIMIT clause unsupported 58

files
preventing file status 39 285

fixed-length records, defining 286
fixed-point overflow, program mask

and 260
FLAGMIG compiler option 14

definition for 108
not available with Enterprise

COBOL 98
FLAGSAA compiler option 98
floating-point changes 71
flow of control, ended 63, 117
FOR REMOVAL phrase of CLOSE

statement 63
Format-x (F,S,U,V) files 285
free COBOL Analyzer 256
FROM, requirements with ACCEPT

statement 63

G
GENERATE statement 54
GOBACK statement 63, 74

differences between CMPR2 and
NOCMPR2 117

I
IBM COBOL

upgrading source, requiring 16, 101
upgrading to Enterprise COBOL 101

IDCAMS REPRO facility 55
IDLGEN compiler option

not supported in Enterprise
COBOL 141

IF statement 77
IGYPG3188 147
IGYPG3189 147
IGZ0005S 259
IGZ0079S 259
IGZ0193W 147
IGZ0194W 147

IGZERRE routine
for upgrading assembler driver 261

ILBOSTP0
assembler driver, alternatives for 261

index names
qualified 64

INHERITS clause 141
INITCHECK compiler option 174
INITIATE statement 54
INSPECT statement

EXAMINE statement 57
TRANSFORM statement 61

installation
compiler, documentation needed 27

INTDATE compiler option
for converted IBM COBOL

programs 144
integrated CICS translator 15, 212

required compiler options 213
integrated DB2 coprocessor 215
Integrated DB2 coprocessor 14
integrated SQL coprocessor 215
intermediate results changed 79
inventory of applications 253

Debug Tool Load Module
Analyzer 256

for upgrading source to Enterprise
COBOL 29

free COBOL Analyzer 256
INVOKE statement 141, 142
IS evaluation in relation conditions

changed 74, 80
ISAM files 54, 55

J
Java

and COBOL
compatibility 232

javac command
recompile for Java 232

JUSTIFIED clause 77

K
keyboard navigation xxxii

L
LABEL RECORD clause 64
LABEL RECORDS clause 59
LANGLVL compiler option

unsupported 88
LANGLVL(1) compiler option

/, =, and L characters 74
ACCEPT MESSAGE COUNT 55
combined abbreviated relational

conditions 73
COPY statement with associated

names 74
DELIMITED BY ALL 84
JUSTIFIED clause 77
NOT phrase 73
PERFORM statement 82
RESERVE clause 81
scaling change 78

LANGLVL(1) compiler option (continued)
SELECT OPTIONAL clause 82

language elements
changed

OS/VS COBOL 70
SOM-based object-oriented

COBOL 141
not supported

OS/VS COBOL 54, 56
SOM-based object-oriented

COBOL 141
Language Environment

advantages of 7
Language Environment-conforming

assembler programs 260
LE’s writable static area (WSA) 190
LINE-COUNTER special register 54
Link Pack Area (LPA) 213
link-editing 182, 229
LIST compiler option 89, 99
LISTER features, unsupported 89
LOAD/BALR calls supported under

Language Environment 258

M
message IGZ0005S 259
message IGZ0079S 259
messages

MIGR, missing for RENAMES 69
METACLASS clause 141
METHODS, changed in Enterprise

COBOL 142
METHODS, not supported in Enterprise

COBOL 141
MIGR compiler option

conversion tool 53, 249
message missing for RENAMES 69

migrating CICS translator
from separate to integrated 212

migrating from CMPR2 to
NOCMPR2 107

Migrating from
XMLPARSE(COMPAT) 297

migrating source
scenarios

Report Writer discarded 37
Report Writer retained 38
with CICS 35
without CICS or report writer 34

tasks when updating 39
migration tools

COBOL and CICS/VS Conversion Aid
(CCCA) 253

Debug Tool Load Module
Analyzer 256

free COBOL Analyzer 256
Report Writer Precompiler 255

mnemonic-name of system input devices
in ACCEPT statement 93

MOVE ALL statement
to PIC 99 65

MOVE statement
CORRESPONDING changes 64
moving fullword binary items 64
multiple TO specification 65
scaling change 78

Index 343

MOVE statement (continued)
SET...TO TRUE 129
warning message for numeric

truncation 65
MULTIPLY statement 79, 131

N
national extension characters 114
new reserved words 153, 165
NOCMPR2 116
NOCMPR2 compiler option

definition for 108
language differences from

CMPR2 108
NOCMPR2 programs

tools for converting source to 249
NOCOMPILE compiler option 88
NODYNAM compiler option 211, 213
NOMINAL KEY clause 55
nonnumerics, CMPR2/NOCMPR2 111
nonunique program-id names 67
NORENT compiler option

above the line support 13
NORENT static area 190
NORES compiler option 88

unsupported in Enterprise
COBOL 98

NOSTGOPT compiler option
for converted OS/VS COBOL

programs 87
NOT phrase 73
NOTE statement 59
NSYMBOL compiler option

for converted IBM COBOL
programs 144

NUMCHECK compiler option 174
migrating to NUMPROC(PFD) 98,

145, 157, 167, 177, 273
numeric-edited, differences 67
NUMPROC compiler option

for converted OS/VS COBOL
programs 87

NUMPROC(MIG) not available in
Enterprise COBOL V5 98, 145, 157,
167, 177

O
OBJECT COMPUTER paragraph 126
object module 229
object module, prolog format 89, 99
object-oriented COBOL

compatibility 232
object-oriented COBOL, SOM-based 14

compiler options not supported 141
language elements changed 141
language elements not

supported 141
not supported in Enterprise

COBOL 140
OBJECTS, changed in Enterprise

COBOL 142
OCCURS clause 65

OCCURS DEPENDING ON clause
changes in values for receiving

items 79
RECORD CONTAINS n

CHARACTERS 67
variable-length group moves 139

OCx abends 259
ODO objects, changes for variable-length

groups 92
ON SIZE ERROR phrase 79
ON statement 59
OPEN statement

COBOL 68 support dropped 60
REVERSED phrase changed 66

options
compiler

complete list 263
for IBM COBOL programs 143
for OS/VS COBOL programs 87
for VS COBOL II programs 97

ORGANIZATION clause 55
OS/VS COBOL

ALPHABET-NAME clause
changed 71

arithmetic accuracy 71
ASSIGN clause changed 71
ASSIGN TO integer system-name

clause 56
CALL statement changed 72
compiler options, complete list 263
considerations when compiling 87
CURRENCY-SIGN clause changed 74
IF statement changed 77
intermediate results changed 79
JUSTIFIED clause 77
OCCURS DEPENDING ON

clause 79
ON SIZE ERROR phrase changed 79
PERFORM statement changes 80
PROGRAM COLLATING SEQUENCE

clause 80
READ statement changes 81
RERUN clause changes 81
RESERVE clause changes 81
reserved word list

complete list 233
RETURN statement changes 81
scaling changed 78
SEARCH statement changes 81
segmentation changes 82
SELECT OPTIONAL clause 82
SORT special register differences 82
source language debugging 83
subscripts out of range 83
undocumented extensions for 62
unsupported compiler options 88
UPSI switch evaluation changed 84
VALUE clause 84
VSAM files 76
WHEN-COMPILED 85
WRITE AFTER POSITIONING

statement 85
OS/VS COBOL compiler limits 281
OS/VS COBOL programs

CICS considerations
support for 209

OS/VS COBOL, upgrading source 15

OSDECK compiler option 89
OUTDD compiler option

for converted OS/VS COBOL
programs 87

P
PAGE-COUNTER special register 54
paragraph names

error for period missing in 67
requirements for Enterprise

COBOL 67, 72
restrictions for USING phrase 72

parameters
restrictions for paragraph names 72

parenthesis evaluation changed 73
PERFORM statement

difference between CMPR2 and
NOCMPR2 120

second UNTIL 66
VARYING/AFTER options 122
VARYING/AFTER phrases 80

periods
missing at end of SD, FD, or RD 67
missing on paragraph names 67
multiple in any division 66
requirements for Area A 66, 95

PGMNAME compiler option 97
for converted IBM COBOL

programs 144
for converted OS/VS COBOL

programs 87
PICTURE clause

B symbol in 71, 124
numeric-edited differences 67
use with VALUE clause 70

POSITIONING phrase of CLOSE 56
PPA4

how to find 189
layout 190

precedence of USE procedures 92
PROCEDURE DIVISION, two periods in

a row 66
program checks causing ASRA

abend 259
PROGRAM COLLATING SEQUENCE

clause
alphabet-name, implicit

comparisons 80
difference between CMPR2 and

NOCMPR2 126
program mask, programs that change

it 260
program names

compatibility 87, 97
requirements 67

program object analysis
Debug Tool Load Module

Analyzer 256
free COBOL Analyzer 256

program objects
inventory of, using conversion

tool 256
program static area 190
prolog format 89, 99

344 Enterprise COBOL for z/OS, V5.2 Migration Guide

Q
QSAM files

preventing files status 39 285
status key values 75

qualification - using the same phrase
repeatedly 67

qualified index names 64
QUEUE runtime option 56

R
READ statement

implicit elementary MOVEs 81
INTO phrase, CMPR2/

NOCMPR2 127
READY TRACE statement, not

supported 60
RECEIVE statement 56
receiving fields, ODO objects 139
RECORD CONTAINS n CHARACTERS

clause
difference between CMPR2 and

NOCMPR2 128
when overridden 67

RECORD CONTAINS, fixed-length
records 286

records, preventing FS 39 when
defining 285

REDEFINES clause
FD support dropped 68
SD support dropped 68

reference modification 92
registers

requirement for assembler
programs 257

regression testing
source considerations 40

relation condition
coding changes 68
evaluation changes 73

REMARKS paragraph 61
RENAMES clause 69
RENT compiler option 211, 213
RENT static area 190
REPLACE statement

affecting EXEC CICS 213
REPLACE statement and comment

lines 92
REPORT clause 54
report section 54
Report Writer

conversion scenario discarding 37
conversion scenario retaining 38
conversion tool 53, 255
language affected 54

Report Writer Precompiler 255
RERUN clause 81
RES compiler option 88, 98
RESERVE clause 81
reserved words

comparison of 233
comparison to VS COBOL II 94

RESET TRACE statement, not
supported 60

return routine, assembler programs 257

RETURN statement
implicit elementary MOVEs 81
INTO phrase, CMPR2/

NOCMPR2 127
REVERSED phrase of OPEN

statement 66
RMODE considerations 197
RRDS (relative-record data sets)

simulating variable-length
records 95, 104, 154

RTEREUS runtime option
using with assembler drivers 260

runtime options
HEAP 184
NOCHECK 184
NOSSRANGE 184
SIMVRD 95, 104, 154
STORAGE 184

S
scaled integers, CMPR2/NOCMPR2 111
SD support in REDEFINES clause 68
SEARCH ALL 107, 147
SEARCH statement 81
SEEK statement unsupported 55
segmentation 82
SELECT clause 82
sending fields, ODO objects 139
sequential files 75
SERVICE RELOAD statement

automated conversion of 254
SET...TO TRUE, CMPR2/NOCMPR2 129
significance exceptions, program mask

and 260
simplified TEST compiler option 158
SIMVRD runtime option 95, 104, 154
SIZE ERROR on MULTIPLY and

DIVIDE 131
slash (/) in CURRENCY-SIGN clause

changed 74
SOM-based object-oriented COBOL 14

compiler options not available 141
language elements changed 141
language elements not

supported 141
not available with Enterprise

COBOL 140
SORT special registers 82
source language conversion

IBM tools 249
inventory of applications 30
tasks when updating 39

special registers
CURRENT-DATE 56
DATE 56
LINE-COUNTER 54
PAGE-COUNTER 54
PRINT-SWITCH 54
SORT differences 82
TALLY 57
TIME 61
TIME-OF-DAY 61
WHEN-COMPILED 85

SPECIAL-NAMES paragraph 74, 109
SPM instructions 260

SQL
coprocessor integration 215

SQL statements
DB2 coprocessor, handling 215

SSRANGE compiler option 83
STACK storage for work area 105
STANDARD LABEL statement 62
START statement

support changed 61
USING KEY clause unsupported 55,

61
STATE compiler option 88
statement connectors, THEN

unsupported 61
static CALL statement

supported under Language
Environment under CICS 259

supported under Language
Environment under non-CICS 258

status key
QSAM files 75
VSAM files 76

STOP RUN statement
differences between CMPR2 and

NOCMPR2 117
storage requirements

compiler 27
subprograms

dynamic calls to ENTRY points 74
subroutines, called by assembler

driver 260
subscripts 83
SUPMAP compiler option 88
SVC LINK

supported under Language
Environment under non-CICS 258

targeting assembler programs 257
SVC LOAD/BALR 261
SVC LOAD/DELETE 261
SXREF compiler option 88
SYMDMP compiler option 88
system input devices for mnemonic-name

suboption in ACCEPT statement 93

T
TALLY special register 57
TERMINATE statement 54
terminating statements, required 63
TEST compiler option

for converted VS COBOL II
programs 97

testing
regression, for source 40

THEN statement 61
TIME-OF-DAY special register 61
TRACK-AREA clause 55
TRACK-LIMIT clause 55
TRANSFORM statement

unsupported 61
translator option

XOPTS 212
translator, integrated CICS 212
TRUNC compiler option

description 279
for CICS applications 212, 213

Index 345

TRUNC compiler option (continued)
for converted IBM COBOL

programs 144
for converted OS/VS COBOL

programs 88
possible differences using

TRUNC(OPT) 64
TYPECHK compiler option

not supported in Enterprise
COBOL 141

U
U3504 abends 259
undocumented extensions

for OS/VS COBOL 62
for VS COBOL II 95

unitialized data sets 180
UNSTRING statement

coding not accepted 70
difference between CMPR2 and

NOCMPR2 132
multiple INTO phrases 70

upgrading
IBM COBOL programs 16
VS COBOL II programs 15

Upgrading programs from Enterprise
COBOL Version 3

Enterprise COBOL 147
Upgrading programs from Enterprise

COBOL Version 4
Enterprise COBOL 161

upgrading source
IBM COBOL programs,

requiring 101
IBM conversion tools 249
scenarios

Report Writer discarded 37
Report Writer retained 38
with CICS 35
without CICS or report writer 34

tasks when updating 39
upgrading, OS/VS COBOL programs 15
UPSI switches

difference between CMPR2 and
NOCMPR2 138

differences with condition-names 84
USE procedure

precedence in VS COBOL II 92
USE statement

BEFORE STANDARD LABEL 62
DEBUGGING declarative 83
GIVING phrase of ERROR

declarative 58
reporting declarative 54

Using REXX execs
processing parameter list

formats 291

V
VALUE clause

condition-name changes 84
use with PICTURE clause

changed 70
variable-length group moves 139

variable-length group, differences 92
variable-length records, defining 285
VARYING phrase of PERFORM

changed 80
VBREF compiler option 89
VBSUM compiler option 89
VCON

supported COBOL/assembler under
CICS 259

supported COBOL/assembler under
non-CICS 258

VOLATILE clause 181
VS COBOL II

compiler options, complete list 263
reserved words, complete list 233
upgrading source 15

VS COBOL II compiler limits 281
VS COBOL II programs

reserved words, comparison 94
upgrading source programs 91

VSAM files
conversions 54
status key changes 76

VSAMOPENFS compiler option 175

W
WHEN-COMPILED special register 85
WORD(NOOO) compiler option

for converted IBM COBOL
programs 146

WORKING-STORAGE
areas explanation 191
how to determine the area 192

WORKING-STORAGE data items 197
WORKING-STORAGE SECTION

how to find 189
in Enterprise COBOL V5 189

WRITE statement 85

X
XML PARSE statements

COMPAT parser considerations 150,
162

XML parser 150, 161
XMLSS suboption behavior 164

XOPTS translator option 212

Z
z/OS

commonly asked questions and
answers 231

Z's in PICTURE string 67
ZONECHECK compiler option 175
ZONEDATA compiler option 175

346 Enterprise COBOL for z/OS, V5.2 Migration Guide

IBM®

Product Number: 5655-W32

Printed in USA

GC14-7383-03

	Contents
	Tables
	Preface
	About this information
	Terminology clarification
	IBM COBOL compilers by name and version
	Acknowledgement
	Using your information
	Enterprise COBOL for z/OS Version 5
	Language Environment element of z/OS

	Summary of changes to this information
	Changes in GC14-7383-03 (March 2019)
	Changes in GC14-7383-02 (March 2019)
	Changes in GC14-7383-00 (June 2013)
	Changes in GC23-8527-01 (August 2009)
	Changes in GC23-8527-00 (December 2007)
	Compiler
	Run time

	Changes in GC27-1409-05 (November 2006)
	Changes in GC27-1409-04 (March 2006)
	Changes in GC27-1409-03 (July 2005)
	Changes in GC27-1409-02 (December 2003)
	Changes in GC27-1409-01 (September 2002)
	Compiler
	Run time

	Changes in GC27-1409-00 (November 2001)
	Compiler
	Run time

	Changes in GC26-4764-05 (September 2000)
	Compiler
	Run time

	Summary of changes to the COBOL compilers
	Changes in IBM Enterprise COBOL for z/OS, Version 5 Release 2 with PTFs installed
	Changes in IBM Enterprise COBOL for z/OS, Version 5 Release 2
	Changes in IBM Enterprise COBOL for z/OS, Version 5 Release 1 Modification 1
	Changes in IBM Enterprise COBOL for z/OS, Version 5 Release 1
	Changes in IBM Enterprise COBOL for z/OS, Version 4 Release 2
	Changes in IBM Enterprise COBOL for z/OS, Version 4 Release 1
	Changes in IBM Enterprise COBOL for z/OS, Version 3 Release 4: service updates, November 2006
	Changes in IBM Enterprise COBOL for z/OS, Version 3 Release 4
	Changes in IBM Enterprise COBOL for z/OS, Version 3 Release 3
	Changes in IBM Enterprise COBOL for z/OS and OS/390, Version 3 Release 2
	Changes in IBM Enterprise COBOL for z/OS and OS/390, Version 3 Release 1
	Changes in COBOL for OS/390 & VM, Version 2 Release 2
	Changes in COBOL for OS/390 & VM V2 R1 Modification 2
	Changes in COBOL for OS/390 & VM V2 R1 Modification 1
	Changes in COBOL for OS/390 & VM, Version 2 Release 1

	How to send your comments
	Accessibility
	Interface information
	Keyboard navigation
	Accessibility of this information
	IBM and accessibility

	Part 1. Overview
	Chapter 1. Introducing the new compiler and run time
	Product relationships: compiler, runtime library, debug
	Comparison of COBOL compilers
	Language Environment's runtime support for different compilers
	Advantages of the new compiler and run time
	Changes with the new compiler and run time
	CMPR2 compiler option not available
	FLAGMIG compiler option
	SOM-based object-oriented COBOL not available
	Integrated DB2 coprocessor available
	Integrated CICS translator available

	General migration tasks
	Planning your strategy
	Upgrading your source to Enterprise COBOL
	OS/VS COBOL
	VS COBOL II
	IBM COBOL
	Enterprise COBOL Version 3
	Enterprise COBOL Version 4

	Adding Enterprise COBOL programs to existing applications

	Chapter 2. Do I need to recompile?
	Migration basics
	Runtime migration
	Moving to Language Environment

	Compiler migration

	Service support for OS/VS COBOL and VS COBOL II programs
	Changing OS/VS COBOL programs

	Interoperability with older levels of IBM COBOL programs

	Part 2. Migration strategies
	Chapter 3. Compiler upgrade checklist
	Chapter 4. Planning to upgrade source programs
	Preparing to upgrade your source
	Installing Enterprise COBOL
	Assessing storage requirements
	Deciding which conversion tools to use and install them
	Educating your programmers on new compiler features

	Taking an inventory of your applications
	Taking an inventory of vendor tools, packages, and products
	Taking an inventory of COBOL applications

	Prioritizing your applications
	Assigning complexity ratings
	Determining conversion priority

	Setting up a conversion procedure
	Programs without CICS or Report Writer
	Programs with CICS
	Programs with Report Writer statements to be discarded
	Programs with Report Writer statements to be retained

	Making application program updates

	Part 3. Upgrading programs
	Chapter 5. Upgrading OS/VS COBOL source programs
	Comparing OS/VS COBOL to Enterprise COBOL
	Language elements that require change (quick reference)

	Converting to 85 COBOL Standard
	COBOL Conversion Tool (CCCA)
	OS/VS COBOL MIGR compiler option

	Language elements that require other products for support
	Report Writer
	Keep existing Report Writer code and use the Report Writer Precompiler
	Convert existing Report Writer code using the Report Writer Precompiler
	Run existing OS/VS COBOL-compiled Report Writer programs under Language Environment
	Report Writer language items affected

	Language elements that are not implemented
	ISAM file handling
	ISAM file handling language items affected

	BDAM file handling
	BDAM file handling language items affected

	Communication feature
	Communication language items affected
	Communication conversion actions

	Language elements that are not supported
	SEARCH ALL statements
	Undocumented OS/VS COBOL extensions that are not supported
	Language elements that changed from OS/VS COBOL

	Chapter 6. Compiling converted OS/VS COBOL programs
	Compiler options for converted programs
	Unsupported OS/VS COBOL compiler options
	Prolog format changes

	Chapter 7. Upgrading VS COBOL II source programs
	Upgrading VS COBOL II programs compiled with the CMPR2 compiler option
	85 COBOL Standard interpretation changes
	REPLACE and comment lines
	Precedence of USE procedures
	Reference modification of a variable-length group receiver

	ACCEPT statement
	New reserved words
	New reserved words

	Undocumented VS COBOL II extensions
	SEARCH ALL statements
	Upgrading programs that use SIMVRD support

	Chapter 8. Compiling VS COBOL II programs
	Compiler options for VS COBOL II programs
	Compiling with Enterprise COBOL
	Compiler options not supported in Enterprise COBOL

	Prolog format changes

	Chapter 9. Upgrading IBM COBOL source programs
	Determining which programs require upgrade before you compile with Enterprise COBOL
	Upgrading programs that have SEARCH ALL statements
	Upgrading programs that use SIMVRD support
	Language Environment runtime considerations
	Numeric items with PICTURE P considerations
	New reserved words in Enterprise COBOL
	New reserved words

	SEARCH ALL statements
	Migrating from the CMPR2 compiler option to NOCMPR2
	Upgrading programs compiled with the CMPR2 compiler option
	ALPHABET clause of the SPECIAL-NAMES paragraph
	ALPHABETIC class
	CALL . . . ON OVERFLOW
	Comparisons between scaled integers and nonnumerics
	COPY ... REPLACING statements using non-COBOL characters
	COPY statement using national extension characters
	File status codes
	Fixed-file attributes and DCB= parameters of JCL
	Implicit EXIT PROGRAM
	OPEN statement failing for QSAM files (FILE STATUS 39)
	OPEN statement failing for VSAM files (FILE STATUS 39)
	PERFORM return mechanism
	PERFORM ... VARYING ... AFTER
	PICTURE clause with "A"s and "B"s
	PROGRAM COLLATING SEQUENCE
	READ INTO and RETURN INTO
	RECORD CONTAINS n CHARACTERS
	SET . . . TO TRUE
	SIZE ERROR on MULTIPLY and DIVIDE
	UNSTRING operand evaluation
	UPSI switches
	Variable-length group moves

	Upgrading SOM-based object-oriented (OO) COBOL programs
	SOM-based OO COBOL language elements that are not supported
	Compiler options IDLGEN and TYPECHK

	SOM-based OO COBOL language elements that are changed

	Chapter 10. Compiling IBM COBOL programs
	Default compiler options for IBM COBOL programs
	Compiler options for IBM COBOL programs
	Compiler options not available in Enterprise COBOL

	Chapter 11. Upgrading programs from Enterprise COBOL Version 3
	SEARCH ALL statements
	Upgrading programs that have SEARCH ALL statements

	Upgrading Enterprise COBOL Version 3 programs that have XML PARSE statements
	COMPAT XML parser considerations

	Upgrading Enterprise COBOL programs that have XML GENERATE statements
	Converting programs that use new reserved words
	Upgrading programs that use SIMVRD support

	Chapter 12. Compiling Enterprise COBOL Version 3 programs
	Compiler option changes from IBM Enterprise COBOL for z/OS, Version 3
	Differences in the TEST compiler option
	Debug information changes with IBM Enterprise COBOL Version 5

	Chapter 13. Upgrading from Enterprise COBOL Version 4
	Upgrading Enterprise COBOL Version 4 programs that have XML PARSE statements
	COMPAT XML parser considerations
	Upgrading Enterprise COBOL Version 4 Release 1 programs that have XML PARSE statements and that use the XMLPARSE(XMLSS) compiler option

	Converting programs that use new reserved words
	Changes in millenium language extensions in IBM Enterprise COBOL for z/OS, Version 5

	Chapter 14. Compiling Enterprise COBOL Version 4 programs
	Compiler option changes from IBM Enterprise COBOL for z/OS, Version 4
	Debug information changes with IBM Enterprise COBOL Version 5

	Part 4. What is new and different with Enterprise COBOL Version 5?
	Chapter 15. Changes with IBM Enterprise COBOL for z/OS, Version 5
	Prerequisite software and service for Enterprise COBOL Version 5
	COBOL source code differences in Enterprise COBOL Version 5
	Compiler option changes in Enterprise COBOL Version 5
	Changes in compiling with Enterprise COBOL Version 5
	Compiler output to uninitialized data sets not supported
	JCL and packaging changes for Enterprise COBOL Version 5
	Compilation restrictions for user-written condition handlers with Enterprise COBOL Version 5

	Binding (link-editing) changes with Enterprise COBOL Version 5
	Changes at run time with IBM Enterprise COBOL for z/OS
	Language Environment option changes
	Variable length records - wrong length READ
	Interoperability with older levels of IBM COBOL programs
	Error behavior changes for incorrect programs
	Using object oriented COBOL or interoperating with C programs

	Debug information changes with IBM Enterprise COBOL Version 5
	WORKING-STORAGE SECTION changes

	Chapter 16. Adding Enterprise COBOL Version 5 programs to existing COBOL applications
	AMODE and RMODE considerations

	Part 5. Enterprise COBOL migration and other IBM products
	Chapter 17. Debug tool
	Initiating Debug Tool
	Debug information changes with IBM Enterprise COBOL Version 5
	Debug Tool changes with IBM Enterprise COBOL Version 5
	Full Screen Mode changes with IBM Enterprise COBOL V5
	Debug Tool changes for remote mode with IBM Enterprise COBOL V5

	Chapter 18. CICS conversion considerations for COBOL source
	CSD setup differences with Enterprise COBOL V5
	DFHRPL setup differences with Enterprise COBOL V5
	Compiler options for programs that run under CICS
	Migrating from the separate CICS translator to the integrated translator
	Integrated CICS translator
	Compiler options for the integrated CICS translator

	Static calls from COBOL V5 programs to VS COBOL II programs under CICS

	Chapter 19. DB2 coprocessor conversion considerations
	DB2 coprocessor integration
	Language elements
	Code-page conversion

	Chapter 20. Moving IMS programs to Enterprise COBOL V5
	Compiling and linking for running under IMS
	LLA-managed load libraries for performance

	Part 6. Appendixes
	Appendix A. Commonly asked questions and answers
	Compatibility
	Compiling with Enterprise COBOL
	Binding (link-editing) Enterprise COBOL programs
	Language Environment services
	Language Environment runtime options
	Subsystems
	z/OS
	Performance
	Service
	Object-oriented syntax, and Java 6, Java 7 and Java 8 SDKs

	Appendix B. COBOL reserved word comparison
	Appendix C. Conversion tools for source programs
	MIGR compiler option
	Language differences
	Statements supported with enhanced accuracy
	Arithmetic statements

	LANGLVL(1) statements not supported
	LANGLVL(1) and LANGLVL(2) statements not supported
	Communications

	Other programs that aid conversion
	Rational Asset Analyzer
	COBOL and CICS/VS Command Level Conversion Aid (CCCA)
	When to use CCCA
	CCCA processing of CICS statements
	Statements dealing with the primary BLLs

	COBOL Report Writer Precompiler
	Debug Tool Load Module Analyzer
	Free and open source COBOL Analyzer

	Appendix D. Applications with COBOL and assembler
	Called assembler programs
	SVC LINK and COBOL run-unit boundary
	Runtime support for assembler COBOL calls under non-CICS
	Runtime support for assembler COBOL calls under CICS
	Converting programs that change the program mask
	Upgrading applications that use an assembler driver
	Convert the assembler driver
	Modify the assembler driver
	Use an unmodified assembler driver

	Assembler programs that load and BALR to MAIN COBOL programs
	Assembler programs that load and delete COBOL programs
	Saving and restoring the high halves of General Purpose Registers in assembler programs
	Finding the program name and compile time stamp in Enterprise COBOL V5 programs

	Appendix E. Option comparison
	Appendix F. Compiler limit comparison
	Appendix G. Preventing file status 39 for QSAM files
	Processing existing files
	Defining variable-length records
	Defining fixed-length records
	Converting existing files that do not match the COBOL record

	Processing new files
	Processing files dynamically created by COBOL

	Appendix H. Overriding binder (linkage-editor) defaults
	How to override the defaults

	Appendix I. TSO considerations
	Using REXX execs

	Appendix J. z/OS UNIX considerations
	Appendix K. Accessing JCL parameters
	Appendix L. Migrating from XMLPARSE(COMPAT) to XMLPARSE(XMLSS)
	Notices
	Programming interface information
	Trademarks

	Glossary
	List of resources
	IBM Enterprise COBOL for z/OS
	Related publications

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

